About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 207250, 10 pages
http://dx.doi.org/10.1155/2013/207250
Review Article

Antioxidant Delivery Pathways in the Anterior Eye

1Department of Optometry and Vision Science, University of Auckland, Auckland 1023, New Zealand
2New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
3School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand

Received 2 May 2013; Accepted 8 August 2013

Academic Editor: Chitra Kannabiran

Copyright © 2013 Ankita Umapathy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Richer, “Antioxidants and the eye,” International Ophthalmology Clinics, vol. 40, no. 4, pp. 1–16, 2000. View at Scopus
  2. C. Chiu and A. Taylor, “Nutritional antioxidants and age-related cataract and maculopathy,” Experimental Eye Research, vol. 84, no. 2, pp. 229–245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Riordan-Eva and E. Cunningham, Vaughan & Asbury's General Ophthalmology, McGraw-Hill, New York, NY, USA, 18th edition, 2011.
  4. J. Besharse, R. Dana, and D. A. Dartt, Encyclopedia of the Eye, Elsevier Science, Amsterdam, The Netherlands, 2010.
  5. J. Krachmer, M. Mannis, and E. Holland, Cornea: Fundamentals, Diagnosis and Management, vol. 1, Mosby, Philadelphia, Pa, USA, 2nd edition, 2005.
  6. S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philosophical transactions of the Royal Society of London B, vol. 366, no. 1568, pp. 1250–1264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. P. J. Donaldson and J. C. Lim, “Membrane transporters: new roles in lens cataract,” in Ocular Transporters in Ophthalmic Diseases and Drug Delivery, J. Tombran-Tink and C. J. Barnstable, Eds., pp. 83–104, Humana Press, New Jersey, NJ, USA, 2008.
  8. O. A. Candia, R. Mathias, and R. Gerometta, “Fluid circulation determined in the isolated bovine lens,” Investigative Ophthalmology and Visual Science, vol. 53, no. 11, pp. 7087–7096, 2012. View at Publisher · View at Google Scholar
  9. R. T. Mathias, J. L. Rae, and G. J. Baldo, “Physiological properties of the normal lens,” Physiological Reviews, vol. 77, no. 1, pp. 21–50, 1997. View at Scopus
  10. M. D. Jacobs, C. Soeller, A. M. G. Sisley, M. B. Cannell, and P. J. Donaldson, “Gap junction processing and redistribution revealed by quantitative optical measurements of connexin46 epitopes in the lens,” Investigative Ophthalmology and Visual Science, vol. 45, no. 1, pp. 191–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Donaldson, J. Kistler, and R. T. Mathias, “Molecular solutions to mammalian lens transparency,” News in Physiological Sciences, vol. 16, no. 3, pp. 118–123, 2001. View at Scopus
  12. E. R. Tamm, “The trabecular meshwork outflow pathways: structural and functional aspects,” Experimental Eye Research, vol. 88, no. 4, pp. 648–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Bron, R. Tripathi, and B. Tripathi, Wolff's Anatomy of the Eye and Orbit, Chapman & Hall Medical, London, UK, 8th edition, 1997.
  14. C. W. Oyster, The Human Eye: Structure and Function, Sinauer Associates Incorporated, 1999.
  15. A. Llobet, X. Gasull, and A. Gual, “Understanding trabecular meshwork physiology: a key to the control of intraocular pressure?” News in Physiological Sciences, vol. 18, no. 5, pp. 205–209, 2003. View at Scopus
  16. G. R. Reiss, P. G. Werness, P. E. Zollman, and R. F. Brubaker, “Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals,” Archives of Ophthalmology, vol. 104, no. 5, pp. 753–755, 1986. View at Scopus
  17. M. V. Riley, R. F. Meyer, and E. M. Yates, “Glutathione in the aqueous humor of human and other species,” Investigative Ophthalmology and Visual Science, vol. 19, no. 1, pp. 94–96, 1980. View at Scopus
  18. A. Ringvold, E. Anderssen, and I. Kjønniksen, “Distribution of ascorbate in the anterior bovine eye,” Investigative Ophthalmology and Visual Science, vol. 41, no. 1, pp. 20–23, 2000. View at Scopus
  19. D. L. Garland, “Ascorbic acid and the eye,” The American Journal of Clinical Nutrition, vol. 54, no. 6, supplement, pp. 1198S–202S, 1991. View at Scopus
  20. J. J. Burns, “Missing step in man, monkey and guinea pig required for the biosynthesis of L-ascorbic acid,” Nature, vol. 180, no. 4585, p. 553, 1957. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Tsukaguchi, T. Tokui, B. Mackenzle et al., “A family of mammalian Na+-dependent L-ascorbic acid transporters,” Nature, vol. 399, no. 6731, pp. 70–75, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Ringvold, “The significance of ascorbate in the aqueous humour protection against UV-A and UV-B,” Experimental Eye Research, vol. 62, no. 3, pp. 261–264, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. R. F. Brubaker, W. M. Bourne, L. A. Bachman, and J. W. McLaren, “Ascorbic acid content of human corneal epithelium,” Investigative Ophthalmology and Visual Science, vol. 41, no. 7, pp. 1681–1683, 2000. View at Scopus
  24. “Ocular oxidants and antioxidant protection,” in Proceedings of the Society for Experimental Biology and Medicine, R. C. Rose, S. P. Richer, and A. M. Bode, Eds., Royal Society of Medicine, New York, NY, USA, 1998.
  25. M. Bando and H. Obazawa, “Regional and subcellular distribution of ascorbate free radical reductase activity in the human lens,” Tokai Journal of Experimental and Clinical Medicine, vol. 16, no. 5-6, pp. 217–222, 1991. View at Scopus
  26. M. Linetsky, E. Shipova, R. Cheng, and B. J. Ortwerth, “Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins,” Biochimica et Biophysica Acta, vol. 1782, no. 1, pp. 22–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Fan, L. W. Reneker, M. E. Obrenovich et al., “Vitamin C mediates chemical aging of lens crystallins by the Maillard reaction in a humanized mouse model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 45, pp. 16912–16917, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Corti, A. F. Casini, and A. Pompella, “Cellular pathways for transport and efflux of ascorbate and dehydroascorbate,” Archives of Biochemistry and Biophysics, vol. 500, no. 2, pp. 107–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Carr and B. Frei, “Does vitamin C act as a pro-oxidant under physiological conditions?” FASEB Journal, vol. 13, no. 9, pp. 1007–1024, 1999. View at Scopus
  30. M. J. Barnes, “Function of ascorbic acid in collagen metabolism,” Annals of the New York Academy of Sciences, vol. 258, pp. 264–277, 1975. View at Scopus
  31. R. N. Williams, C. A. Paterson, K. E. Eakins, and P. Bhattacherjee, “Ascorbic acid inhibits the activity of polymorphonuclear leukocytes in inflamed ocular tissues,” Experimental Eye Research, vol. 39, no. 3, pp. 261–265, 1984. View at Scopus
  32. E. Ganea and J. J. Harding, “Glutathione-related enzymes and the eye,” Current Eye Research, vol. 31, no. 1, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Bode, E. Green, C. R. Yavarow et al., “Ascorbic acid regeneration by bovine iris-ciliary body,” Current Eye Research, vol. 12, no. 7, pp. 593–601, 1993. View at Scopus
  34. H. Sasaki, F. J. Giblin, B. S. Winkler, B. Chakrapani, V. Leverenz, and C. C. Shu, “A protective role for glutathione-dependent reduction of dehydroascorbic acid in lens epithelium,” Investigative Ophthalmology and Visual Science, vol. 36, no. 9, pp. 1804–1817, 1995. View at Scopus
  35. A. Behndig, B. Svensson, S. L. Marklund, and K. Karlsson, “Superoxide dismutase isoenzymes in the human eye,” Investigative Ophthalmology and Visual Science, vol. 39, no. 3, pp. 471–475, 1998. View at Scopus
  36. M. Alfonso-Prieto, X. Biarnés, P. Vidossich, and C. Rovira, “The molecular mechanism of the catalase reaction,” Journal of the American Chemical Society, vol. 131, no. 33, pp. 11751–11761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. R. S. Talluri, S. Katragadda, D. Pal, and A. K. Mitra, “Mechanism of L-ascorbic acid uptake by rabbit corneal epithelial cells: evidence for the involvement of sodium-dependent vitamin C transporter 2,” Current Eye Research, vol. 31, no. 6, pp. 481–489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. C. K. M. Choy, I. F. F. Benzie, and P. Cho, “Is ascorbate in human tears from corneal leakage or from lacrimal secretion?” Clinical and Experimental Optometry, vol. 87, no. 1, pp. 24–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. A. M. Bode, S. S. Vanderpool, E. C. Carlson, D. A. Meyer, and R. C. Rose, “Ascorbic acid uptake and metabolism by corneal endothelium,” Investigative Ophthalmology and Visual Science, vol. 32, no. 8, pp. 2266–2271, 1991. View at Scopus
  40. M. C. McGahan and P. J. Bentley, “Stimulation of transepithelial sodium and chloride transport by ascorbic acid. Induction of Na+ channels is inhibited by amiloride,” Biochimica et Biophysica Acta, vol. 689, no. 2, pp. 385–392, 1982. View at Scopus
  41. B. Reid, B. Song, C. D. McCaig, and M. Zhao, “Wound healing in rat cornea: the role of electric currents,” FASEB Journal, vol. 19, no. 3, pp. 379–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Rubowitz, E. I. Assia, M. Rosner, and M. Topaz, “Antioxidant protection against corneal damage by free radicals during phacoemulsification,” Investigative Ophthalmology and Visual Science, vol. 44, no. 5, pp. 1866–1870, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. S. D. Varma, S. Kumar, and R. D. Richards, “Light-induced damage to ocular lens cation pump: prevention by vitamin C,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 7, pp. 3504–3506, 1979. View at Scopus
  44. H. Heath, “The distribution and possible functions of ascorbic acid in the eye,” Experimental Eye Research, vol. 1, no. 4, pp. 362–367, 1962. View at Scopus
  45. H. L. Kern and S. L. Zolot, “Transport of vitamin C in the lens,” Current Eye Research, vol. 6, no. 7, pp. 885–896, 1987. View at Scopus
  46. R. Merriman-Smith, P. Donaldson, and J. Kistler, “Differential expression of facilitative glucose transporters GLUT1 and GLUT3 in the lens,” Investigative Ophthalmology and Visual Science, vol. 40, no. 13, pp. 3224–3230, 1999. View at Scopus
  47. J. Bianchi and R. C. Rose, “Dehydroascorbic acid and cell membranes: possible disruptive effects,” Toxicology, vol. 40, no. 1, pp. 75–82, 1986. View at Scopus
  48. F. J. Giblin, J. P. McCready, T. Kodama, and V. N. Reddy, “A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor,” Experimental Eye Research, vol. 38, no. 1, pp. 87–93, 1984. View at Scopus
  49. A. Spector, “Oxidative stress-induced cataract: mechanism of action,” FASEB Journal, vol. 9, no. 12, pp. 1173–1182, 1995. View at Scopus
  50. J. DiMattio, “Ascorbic acid entry into cornea of rat and guinea pig,” Cornea, vol. 11, no. 1, pp. 53–65, 1992. View at Scopus
  51. D. K. Yue, S. McLennan, E. Fisher et al., “Ascorbic acid metabolism and polyol pathway in diabetes,” Diabetes, vol. 38, no. 2, pp. 257–261, 1989. View at Scopus
  52. J. DiMattio, “Active transport of ascorbic acid into lens epithelium of the rat,” Experimental Eye Research, vol. 49, no. 5, pp. 873–885, 1989. View at Publisher · View at Google Scholar · View at Scopus
  53. J. DiMattio, “A comparative study of ascorbic acid entry into aqueous and vitreous humors of the rat and guinea pig,” Investigative Ophthalmology and Visual Science, vol. 30, no. 11, pp. 2320–2331, 1989. View at Scopus
  54. R. Kannan, A. Stolz, Q. Ji, P. D. Prasad, and V. Ganapathy, “Vitamin C transport in human lens epithelial cells: evidence for the presence of SVCT2,” Experimental Eye Research, vol. 73, no. 2, pp. 159–165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Nakazawa, M. Oka, M. Bando, T. Inoue, and M. Takehana, “The role of ascorbic acid transporter in the lens of streptozotocin-induced diabetic rat,” Biomedicine and Preventive Nutrition, vol. 1, no. 1, pp. 43–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Nakazawa, M. Oka, A. Mitsuishi, M. Bando, and M. Takehana, “Quantitative analysis of ascorbic acid permeability of aquaporin 0 in the lens,” Biochemical and Biophysical Research Communications, vol. 415, no. 1, pp. 125–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Higginbotham, B. Y. J. T. Yue, E. Crean, and J. Peace, “Effects of ascorbic acid on trabecular meshwork cells in culture,” Experimental Eye Research, vol. 46, no. 4, pp. 507–516, 1988. View at Scopus
  58. B. Y. J. T. Yue, E. J. Higginbotham, and I. L. Chang, “Ascorbic acid modulates the production of fibronectin and laminin by cells from an eye tissue—trabecular meshwork,” Experimental Cell Research, vol. 187, no. 1, pp. 65–68, 1990. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Zhou, E. J. Higginbotham, and B. Y. J. T. Yue, “Effects of ascorbic acid on levels of fibronectin, laminin and collagen type 1 in bovine trabecular meshwork in organ culture,” Current Eye Research, vol. 17, no. 2, pp. 211–217, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. D. A. Ammar, K. M. Hamweyah, and M. Y. Kahook, “Antioxidants protect trabecular meshwork cells from hydrogen peroxide-induced cell death,” Translational Vision Science and Technology, vol. 1, no. 1, article 4, 2012.
  61. S. M. Ferreira, S. F. Á. Lerner, R. Brunzini, P. A. Evelson, and S. F. Llesuy, “Oxidative stress markers in aqueous humor of glaucoma patients,” The American Journal of Ophthalmology, vol. 137, no. 1, pp. 62–69, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. J. C. Veltman, J. Podval, J. Mattern, K. L. Hall, R. J. Lambert, and H. F. Edelhauser, “The disposition and bioavailability of 35S-GSH from 35S-GSSG in BSS PLUS in rabbit ocular tissues,” Journal of Ocular Pharmacology and Therapeutics, vol. 20, no. 3, pp. 256–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Nakamura, T. Nakano, and M. Hikida, “Effects of oxidized glutathione and reduced glutathione on the barrier function of the corneal endothelium,” Cornea, vol. 13, no. 6, pp. 493–495, 1994. View at Scopus
  64. E. I. Anderson and D. D. Wright, “The roles of glutathione reductase and γ-glutamyl transpeptidase in corneal transendothelial fluid transport mediated by oxidized glutathione and glucose,” Experimental Eye Research, vol. 35, no. 1, pp. 11–19, 1982. View at Scopus
  65. M. C. Ng and M. V. Riley, “Relation of intracellular levels and redox state of glutathione to endothelial function in the rabbit cornea,” Experimental Eye Research, vol. 30, no. 5, pp. 511–517, 1980. View at Scopus
  66. M. P. Langford, P. Redmond, R. Chanis, R. P. Misra, and T. B. Redens, “Glutamate, excitatory amino acid transporters, Xc-antiporter, glutamine synthetase, and γ-glutamyltranspeptidase in human corneal epithelium,” Current Eye Research, vol. 35, no. 3, pp. 202–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Li, M. S. Lee, R. S. Y. Lee, P. J. Donaldson, and J. C. Lim, “Characterization of glutathione uptake, synthesis, and efflux pathways in the epithelium and endothelium of the rat cornea,” Cornea, vol. 31, no. 11, pp. 1304–1312, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Lewerenz, M. Klein, and A. Methner, “Cooperative action of glutamate transporters and cystine/glutamate antiporter system Xc-protects from oxidative glutamate toxicity,” Journal of Neurochemistry, vol. 98, no. 3, pp. 916–925, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Storck, S. Schulte, K. Hofmann, and W. Stoffel, “Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 22, pp. 10955–10959, 1992. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Ballatori, S. M. Krance, R. Marchan, and C. L. Hammond, “Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology,” Molecular Aspects of Medicine, vol. 30, no. 1-2, pp. 13–28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Mahagita, S. M. Grassl, P. Piyachaturawat, and N. Ballatori, “Human organic anion transporter 1B1 and 1B3 function as bidirectional carriers and do not mediate GSH-bile acid cotransport,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 293, no. 1, pp. G271–G278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. L. Li, P. J. Meier, and N. Ballatori, “Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione,” Molecular Pharmacology, vol. 58, no. 2, pp. 335–340, 2000. View at Scopus
  73. L. H. Lash, “Renal membrane transport of glutathione in toxicology and disease,” Veterinary Pathology, vol. 48, no. 2, pp. 408–419, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. H. Aebi and L. Flohé, Glutathione: Proceedings of the 16th Conference of the German Society of Biological Chemistry, Tübingen, March 1973, Georg Thieme, New York, NY, USA, 1974.
  75. F. J. Giblin, B. Chakrapani, and V. N. Reddy, “Glutathione and lens epithelial function,” Investigative Ophthalmology, vol. 15, no. 5, pp. 381–393, 1976. View at Scopus
  76. V. N. Reddy, “Metabolism of glutathione in the lens,” Experimental Eye Research, vol. 11, no. 3, pp. 310–320, 1971. View at Scopus
  77. J. Lim, Y. C. Lam, J. Kistler, and P. J. Donaldson, “Molecular characterization of the cystine/glutamate exchanger and the excitatory amino acid transporters in the rat lens,” Investigative Ophthalmology and Visual Science, vol. 46, no. 8, pp. 2869–2877, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Lim, K. A. Lorentzen, J. Kistler, and P. J. Donaldson, “Molecular identification and characterisation of the glycine transporter (GLYT1) and the glutamine/glutamate transporter (ASCT2) in the rat lens,” Experimental Eye Research, vol. 83, no. 2, pp. 447–455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Li, L. Li, P. J. Donaldson, and J. C. Lim, “Dynamic regulation of GSH synthesis and uptake pathways in the rat lens epithelium,” Experimental Eye Research, vol. 90, no. 2, pp. 300–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. M. G. Kahn, F. J. Giblin, and D. L. Epstein, “Glutathione in calf trabecular meshwork and its relation to aqueous humor outflow facility,” Investigative Ophthalmology and Visual Science, vol. 24, no. 9, pp. 1283–1287, 1983. View at Scopus
  81. P. P. Pattabiraman, P. E. Pecen, and P. V. Rao, “MRP4-mediated regulation of intracellular cAMP and cGMP levels in trabecular meshwork cells and homeostasis of intraocular pressure,” Investigative Ophthalmology and Visual Science, vol. 54, no. 3, pp. 1636–1649, 2013. View at Publisher · View at Google Scholar
  82. C. W. Do and M. M. Civan, “Basis of chloride transport in ciliary epithelium,” Journal of Membrane Biology, vol. 200, no. 1, pp. 1–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. T.-C. Chu and O. A. Candia, “Active transport of ascorbate across the isolated rabbit ciliary epithelium,” Investigative Ophthalmology and Visual Science, vol. 29, no. 4, pp. 594–599, 1988. View at Scopus
  84. H. Helbig, C. Korbmacher, and M. Wiederholt, “Mechanism of ascorbic acid transport in the aqueous humor,” Fortschritte der Ophthalmologie, vol. 87, no. 4, pp. 421–424, 1990. View at Scopus
  85. K. Takata, T. Kasahara, M. Kasahara, O. Ezaki, and H. Hirano, “Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in the ciliary body and iris of the rat eye,” Investigative Ophthalmology and Visual Science, vol. 32, no. 5, pp. 1659–1666, 1991. View at Scopus
  86. R. R. Socci and N. A. Delamere, “Characteristics of ascorbate transport in the rabbit iris-ciliary body,” Experimental Eye Research, vol. 46, no. 6, pp. 853–861, 1988. View at Scopus
  87. M. Ng, S. R. Susan, and H. Shichi, “Bovine non-pigmented and pigmented ciliary epithelial cells in culture: comparison of catalase, superoxide dismutase and glutathione peroxidase activities,” Experimental Eye Research, vol. 46, no. 6, pp. 919–928, 1988. View at Scopus
  88. M. C. Ng and H. Shichi, “Purification and properties of glutathione reductases from bovine ciliary body,” Experimental Eye Research, vol. 43, no. 3, pp. 477–489, 1986. View at Scopus
  89. H. Shichi, “Glutathione-dependent detoxification of peroxide in bovine ciliary body,” Experimental Eye Research, vol. 50, no. 6, pp. 813–818, 1990. View at Publisher · View at Google Scholar · View at Scopus
  90. A. K. Singh and H. Shichi, “A novel glutathione peroxidase in bovine eye: sequence analysis, mRNA level, and translation,” The Journal of Biological Chemistry, vol. 273, no. 40, pp. 26171–26178, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. N. A. Rao, L. G. Thaete, J. M. Delmage, and A. Sevanian, “Superoxide dismutase in ocular structures,” Investigative Ophthalmology and Visual Science, vol. 26, no. 12, pp. 1778–1781, 1985. View at Scopus
  92. K. C. Bhuyan and D. K. Bhuyan, “Superoxide dismutase of the eye. Relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage,” Biochimica et Biophysica Acta, vol. 542, no. 1, pp. 28–38, 1978. View at Scopus
  93. J. M. Martin-Alonso, S. Ghosh, and M. Coca-Prados, “Cloning of the bovine plasma selenium-dependent glutathione peroxidase (GP) cDNA from the ocular ciliary epithelium: expression of the plasma and cellular forms within the mammalian eye,” Journal of Biochemistry, vol. 114, no. 2, pp. 284–291, 1993. View at Scopus
  94. R. G. Hu, J. C. Lim, M. Kalloniatis, and P. J. Donaldson, “Cellular localization of glutamate and glutamine metabolism and transport pathways in the rat ciliary epithelium,” Investigative Ophthalmology and Visual Science, vol. 52, no. 6, pp. 3345–3353, 2011. View at Scopus
  95. B. Li, A. Umapathy, L. U. Tran, P. J. Donaldson, and J. C. Lim, “Molecular identification and cellular localisation of GSH synthesis, uptake, efflux and degradation pathways in the rat ciliary body,” Histochemistry and Cell Biology, vol. 139, no. 4, pp. 559–571, 2013. View at Publisher · View at Google Scholar
  96. B. Gao, R. D. Huber, A. Wenzel et al., “Localization of organic anion transporting polypeptides in the rat and human ciliary body epithelium,” Experimental Eye Research, vol. 80, no. 1, pp. 61–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. B. Aydin, R. Yagci, F. M. Yilmaz et al., “Prevention of selenite-induced cataractogenesis by N-acetylcysteine in rats,” Current Eye Research, vol. 34, no. 3, pp. 196–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. J. W. Carey, E. Y. Pinarci, S. Penugonda, H. Karacal, and N. Ercal, “In vivo inhibition of l-buthionine-(S,R)-sulfoximine-induced cataracts by a novel antioxidant, N-acetylcysteine amide,” Free Radical Biology and Medicine, vol. 50, no. 6, pp. 722–729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Ohtsu, S. Kitahara, and K. Fujii, “Anticataractogenic property of γ-glutamylcysteine ethyl ester in an animal model of cataract,” Ophthalmic Research, vol. 23, no. 1, pp. 51–58, 1991. View at Scopus
  100. J. Mårtensson, R. Steinherz, A. Jain, and A. Meister, “Glutathione ester prevents buthionine sulfoximine-induced cataracts and lens epithelial cell damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 22, pp. 8727–8731, 1989. View at Publisher · View at Google Scholar · View at Scopus
  101. W. B. Rathbun, A. M. Holleschau, J. F. Cohen, and H. T. Nagasawa, “Prevention of acetaminophen- and naphthalene-induced cataract and glutathione loss by CySSME,” Investigative Ophthalmology and Visual Science, vol. 37, no. 5, pp. 923–929, 1996. View at Scopus
  102. W. B. Rathbun, H. T. Nagasawa, and C. E. Killen, “Prevention of naphthalene-induced cataract and hepatic glutathione loss by the L-cysteine prodrugs, MTCA and PTCA,” Experimental Eye Research, vol. 62, no. 4, pp. 433–442, 1996. View at Publisher · View at Google Scholar · View at Scopus
  103. M. F. Lou, “Redox regulation in the lens,” Progress in Retinal and Eye Research, vol. 22, no. 5, pp. 657–682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Brennan, R. McGreal, and M. Kantorow, “Oxidative stress defense and repair systems of the ocular lens,” Frontiers in Bioscience, vol. 4, pp. 141–155, 2012.
  105. H. Yan, J. J. Harding, K. Xing, and M. F. Lou, “Revival of glutathione reductase in human cataractous and clear lens extracts by thioredoxin and thioredoxin reductase, in conjunction with α-crystallin or thioltransferase,” Current Eye Research, vol. 32, no. 5, pp. 455–463, 2007. View at Publisher · View at Google Scholar · View at Scopus