About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 209735, 8 pages
http://dx.doi.org/10.1155/2013/209735
Clinical Study

Initial Dose of Three Monthly Intravitreal Injections versus PRN Intravitreal Injections of Bevacizumab for Macular Edema Secondary to Branch Retinal Vein Occlusion

1Department of Ophthalmology, College of Medicine, Seoul National University Bundang Hospital, 166 Gumiro, Bundang-gu, Seongnam, Gyeonggi-do 463-707, Republic of Korea
2Department of Ophthalmology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, 20 Boramae-ro 5 gil, Dongjak-gu, Seoul 156-707, Republic of Korea

Received 20 May 2013; Accepted 20 July 2013

Academic Editor: Tatsuya Mimura

Copyright © 2013 Seong Joon Ahn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. V. Greer, I. J. Constable, and R. L. Cooper, “Macular oedema and retinal branch vein occlusion,” Australian Journal of Ophthalmology, vol. 8, no. 3, pp. 207–209, 1980. View at Scopus
  2. “Argon laser photocoagulation for macular edema in branch vein occlusion. The Branch Vein Occlusion Study Group,” American Journal of Ophthalmology, vol. 98, no. 3, pp. 271–282, 1984.
  3. I. U. Scott, M. S. Ip, P. C. VanVeldhuisen et al., “A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular edema secondary to branch retinal vein occlusion: the standard care versus corticosteroid for retinal vein occlusion (SCORE) study report 6,” Archives of Ophthalmology, vol. 127, no. 9, pp. 1115–1128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. H. Park and I. T. Kim, “Long-term effects of vitrectomy and internal limiting membrane peeling for macular edema secondary to central retinal vein occlusion and hemiretinal vein occlusion,” Retina, vol. 30, no. 1, pp. 117–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Ma, K. Yao, Z. Zhang, and X. Tang, “25-gauge vitrectomy and triamcinolone acetonide-assisted internal limiting membrane peeling for chronic cystoid macular edema associated with branch retinal vein occlusion,” Retina, vol. 28, no. 7, pp. 947–956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Funk, K. Kriechbaum, F. Prager et al., “Intraocular concentrations of growth factors and cytokines in retinal vein occlusion and the effect of therapy with bevacizumab,” Investigative Ophthalmology and Visual Science, vol. 50, no. 3, pp. 1025–1032, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. U. Krohne, N. Eter, F. G. Holz, and C. H. Meyer, “Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans,” American Journal of Ophthalmology, vol. 146, no. 4, pp. 508–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Noma, H. Funatsu, M. Yamasaki et al., “Aqueous humour levels of cytokines are correlated to vitreous levels and severity of macular oedema in branch retinal vein occlusion,” Eye, vol. 22, no. 1, pp. 42–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. P. A. Campochiaro, G. Hafiz, R. Channa et al., “Antagonism of vascular endothelial growth factor for macular edema caused by retinal vein occlusions: two-year outcomes,” Ophthalmology, vol. 117, no. 12, pp. 2387.e5–2394.e5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. A. Campochiaro, J. S. Heier, L. Feiner et al., “Ranibizumab for macular edema following branch retinal vein occlusion. Six-month primary end point results of a phase III study,” Ophthalmology, vol. 117, no. 6, pp. 1102.e1–1112.e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. M. Brown, P. A. Campochiaro, R. B. Bhisitkul et al., “Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study,” Ophthalmology, vol. 118, no. 8, pp. 1594–1602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. I. Roh, S. H. Byeon, and O. W. Kwon, “Repeated intravitreal injection of bevacizumab for clinically significant diabetic macular edema,” Retina, vol. 28, no. 9, pp. 1314–1318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Ziemssen, C. M. Deuter, N. Stuebiger, and M. Zierhut, “Weak transient response of chronic uveitic macular edema to intravitreal bevacizumab (Avastin),” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 245, no. 6, pp. 917–918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. E. J. Chung, Y. T. Hong, S. C. Lee, O. W. Kwon, and H. J. Koh, “Prognostic factors for visual outcome after intravitreal bevacizumab for macular edema due to branch retinal vein occlusion,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 9, pp. 1241–1247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Figueroa, I. Contreras, S. Noval, and C. Arruabarrena, “Results of bevacizumab as the primary treatment for retinal vein occlusions,” British Journal of Ophthalmology, vol. 94, no. 8, pp. 1052–1056, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Rensch, J. B. Jonas, and U. H. M. Spandau, “Early intravitreal bevacizumab for non-ischaemic branch retinal vein occlusion,” Ophthalmologica, vol. 223, no. 2, pp. 124–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Russo, A. Barone, E. Conte, F. Prascina, A. Stella, and N. D. Noci, “Bevacizumab compared with macular laser grid photocoagulation for cystoid macular edema in branch retinal vein occlusion,” Retina, vol. 29, no. 4, pp. 511–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Beutel, F. Ziemssen, M. Lüke, M. Partsch, K.-U. Bartz-Schmidt, and F. Gelisken, “Intravitreal bevacizumab treatment of macular edema in central retinal vein occlusion: one-year results,” International Ophthalmology, vol. 30, no. 1, pp. 15–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Prager, S. Michels, K. Kriechbaum et al., “Intravitreal bevacizumab (Avastin) for macular oedema secondary to retinal vein occlusion: 12-month results of a prospective clinical trial,” British Journal of Ophthalmology, vol. 93, no. 4, pp. 452–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. F. Spaide, L. K. Chang, J. M. Klancnik et al., “Prospective study of intravitreal ranibizumab as a treatment for decreased visual acuity secondary to central retinal vein occlusion,” American Journal of Ophthalmology, vol. 147, no. 2, pp. 298–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Guthoff, T. Meigen, K. Hennemann, and W. Schrader, “Comparison of bevacizumab and triamcinolone for treatment of macular edema secondary to branch retinal vein occlusion in a pair-matched analysis,” Ophthalmologica, vol. 224, no. 5, pp. 319–324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. D. Rabena, D. J. Pieramici, A. A. Castellarin, M. A. Nasir, and R. L. Avery, “Intravitreal bevacizumab (Avastin) in the treatment of macular edema secondary to branch retinal vein occlusion,” Retina, vol. 27, no. 4, pp. 419–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Wu, J. F. Arevalo, J. A. Roca et al., “Comparison of two doses of intravitreal bevacizumab (avastin) for treatment of macular edema secondary to branch retinal vein occlusion: results from the Pan-American collaborative retina study group at 6 months of follow-up,” Retina, vol. 28, no. 2, pp. 212–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. H. M. Kang, E. J. Chung, Y. M. Kim, and H. J. Koh, “Spectral-domain optical coherence tomography (SD-OCT) patterns and response to intravitreal bevacizumab therapy in macular edema associated with branch retinal vein occlusion,” Graefe'S Archive For Clinical and Experimental Ophthalmology, vol. 251, no. 2, pp. 501–508, 2013.
  25. A. Domalpally, Q. Peng, R. Danis, B. Blodi, I. U. Scott, and M. Ip, “Association of outer retinal layer morphology with visual acuity in patients with retinal vein occlusion: SCORE Study Report 13,” Eye, vol. 26, no. 7, pp. 919–924, 2012.
  26. R. Gallego-Pinazo, R. Dolz-Marco, D. Pardo-Lopez, et al., “Ranibizumab for serous macular detachment in branch retinal vein occlusions,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 251, no. 1, pp. 9–14, 2013.
  27. H. Noma, H. Funatsu, T. Mimura, and K. Shimada, “Macular sensitivity and morphology after intravitreal injection of triamcinolone acetonide for macular edema with branch retinal vein occlusion,” Retina, vol. 32, no. 9, pp. 1844–1852, 2012.
  28. D. M. Brown, P. A. Campochiaro, R. P. Singh et al., “Ranibizumab for macular edema following central retinal vein occlusion. Six-month primary end point results of a phase III study,” Ophthalmology, vol. 117, no. 6, pp. 1124.e1–1133.e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Terui, M. Kondo, T. Sugita et al., “Changes in areas of capillary nonperfusion after intravitreal injection of bevacizumab in eyes with branch retinal vein occlusion,” Retina, vol. 31, no. 6, pp. 1068–1074, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Heier, P. A. Campochiaro, L. Yau et al., “Ranibizumab for macular edema due to retinal vein occlusions: long-term follow-up in the HORIZON trial,” Ophthalmology, vol. 119, no. 4, pp. 802–809, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. I. A. Falkenstein, D. E. Cochran, S. P. Azen et al., “Comparison of visual acuity in macular degeneration patients measured with snellen and early treatment diabetic retinopathy study charts,” Ophthalmology, vol. 115, no. 2, pp. 319–323, 2008. View at Publisher · View at Google Scholar · View at Scopus