About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 210726, 10 pages
http://dx.doi.org/10.1155/2013/210726
Research Article

Evaluation of NK Cell Function by Flowcytometric Measurement and Impedance Based Assay Using Real-Time Cell Electronic Sensing System

1Department of Biomedical Science, Graduate School, Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, Seoul 137-701, Republic of Korea
2Department of Laboratory Medicine, Seoul St. Mary’s Hospital, Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, Seoul 137-701, Republic of Korea

Received 14 June 2013; Revised 22 August 2013; Accepted 6 September 2013

Academic Editor: Domenico Mavilio

Copyright © 2013 Ki-Hyun Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Cooper, T. A. Fehniger, and M. A. Caligiuri, “The biology of human natural killer-cell subsets,” Trends in Immunology, vol. 22, no. 11, pp. 633–640, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Valiathan, J. E. Lewis, A. B. Melillo, S. Leonard, K. H. Ali, and D. Asthana, “Evaluation of a flow cytometry-based assay for natural killer cell activity in clinical settings,” Scandinavian Journal of Immunology, vol. 75, no. 4, pp. 455–462, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S.-H. Lee, T. Miyagi, and C. A. Biron, “Keeping NK cells in highly regulated antiviral warfare,” Trends in Immunology, vol. 28, no. 6, pp. 252–259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Moretta, E. Ciccone, A. Poggi, M. C. Mingari, and A. Moretta, “Origin and functions of human natural killer cells,” International Journal of Clinical & Laboratory Research, vol. 24, no. 4, pp. 181–186, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Vivier, D. H. Raulet, A. Moretta et al., “Innate or adaptive immunity? The example of natural killer cells,” Science, vol. 331, no. 6013, pp. 44–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Hatam, S. Schuval, and V. R. Bonagura, “Flow cytometric analysis of natural killer cell function as a clinical assay,” Cytometry, vol. 16, no. 1, pp. 59–68, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Wiltschke, E. Tyl, P. Speiser, et al., “Increased natural killer cell activity correlates with low or negative expression of the HER-2/neu oncogene in patients with breast cancer,” Cancer, vol. 73, no. 1, pp. 135–139, 1994.
  8. S. C. Chiang, J. Theorell, M. Entesarian, et al., “Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production,” Blood, vol. 12, no. 8, pp. 1345–1356, 2013.
  9. M. Claus, J. Greil, and C. Watzl, “Comprehensive analysis of NK cell function in whole blood samples,” Journal of Immunological Methods, vol. 341, no. 1-2, pp. 154–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Fauriat, E. O. Long, H.-G. Ljunggren, and Y. T. Bryceson, “Regulation of human NK-cell cytokine and chemokine production by target cell recognition,” Blood, vol. 115, no. 11, pp. 2167–2176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Alter, J. M. Malenfant, and M. Altfeld, “CD107a as a functional marker for the identification of natural killer cell activity,” Journal of Immunological Methods, vol. 294, no. 1-2, pp. 15–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. G. G. Kim, V. S. Donnenberg, A. D. Donnenberg, W. Gooding, and T. L. Whiteside, “A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons to a 4 h 51Cr-release assay,” Journal of Immunological Methods, vol. 325, no. 1-2, pp. 51–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Y.-Y. Jang, D. Cho, S.-K. Kim et al., “An improved flow cytometry-based natural killer cytotoxicity assay involving calcein AM staining of effector cells,” Annals of Clinical and Laboratory Science, vol. 42, no. 1, pp. 42–49, 2012. View at Scopus
  14. J. Zhu, X. Wang, X. Xu, and Y. A. Abassi, “Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays,” Journal of Immunological Methods, vol. 309, no. 1-2, pp. 25–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. L. Kane, F. A. Ashton, J. L. Schmitz, and J. D. Folds, “Determination of natural killer cell function by flow cytometry,” Clinical and Diagnostic Laboratory Immunology, vol. 3, no. 3, pp. 295–300, 1996. View at Scopus
  16. E. Aktas, U. C. Kucuksezer, S. Bilgic, G. Erten, and G. Deniz, “Relationship between CD107a expression and cytotoxic activity,” Cellular Immunology, vol. 254, no. 2, pp. 149–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. B. V. Dons'koi, V. P. Chernyshov, and D. V. Osypchuk, “Measurement of NK activity in whole blood by the CD69 up-regulation after co-incubation with K562, comparison with NK cytotoxicity assays and CD107a degranulation assay,” Journal of Immunological Methods, vol. 372, no. 1-2, pp. 187–195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Mordoh, E. M. Levy, and M. P. Roberti, “Natural killer cells in human cancer: from biological functions to clinical applications,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 676198, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Schleinitz, F. Vély, J.-R. Harlé, and E. Vivier, “Natural killer cells in human autoimmune diseases,” Immunology, vol. 131, no. 4, pp. 451–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Chiche, J.-M. Forel, G. Thomas et al., “The role of natural killer cells in sepsis,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 986491, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Sierich and T. Eiermann, “Comparing individual NK cell activity in vitro,” Current Protocols in Immunology, chapter 14, unit 14.32, 2013.
  22. Y.-W. Park, S.-J. Kee, Y.-N. Cho et al., “Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 60, no. 6, pp. 1753–1763, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. W. Leong and T. A. Fehniger, “Human NK cells: set to kill,” Blood, vol. 117, no. 8, pp. 2297–2298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Nedvetzki, S. Sowinski, R. A. Eagle et al., “Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses,” Blood, vol. 109, no. 9, pp. 3776–3785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Moodley, C. E. Angel, M. Glass, and E. S. Graham, “Real-time profiling of NK cell killing of human astrocytes using xCELLigence technology,” Journal of Neuroscience Methods, vol. 200, no. 2, pp. 173–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Slanina, A. König, H. Claus, M. Frosch, and A. Schubert-Unkmeir, “Real-time impedance analysis of host cell response to meningococcal infection,” Journal of Microbiological Methods, vol. 84, no. 1, pp. 101–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Roda, R. Parihar, C. Magro, G. J. Nuovo, S. Tridandapani, and W. E. Carson III, “Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells,” Cancer Research, vol. 66, no. 1, pp. 517–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. G. V. Hanson, V. Özenci, M. C. V. Carlsten et al., “A short-term dietary supplementation with high doses of vitamin e increases NK cell cytolytic activity in advanced colorectal cancer patients,” Cancer Immunology, Immunotherapy, vol. 56, no. 7, pp. 973–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. T. Bryceson, M. E. March, D. F. Barber, H.-G. Ljunggren, and E. O. Long, “Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells,” Journal of Experimental Medicine, vol. 202, no. 7, pp. 1001–1012, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. T. Bryceson, M. E. March, H.-G. Ljunggren, and E. O. Long, “Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion,” Blood, vol. 107, no. 1, pp. 159–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Smyth, C. O. C. Zachariae, Y. Norihisa, J. R. Ortaldo, A. Hishinuma, and K. Matsushima, “IL-8 gene expression and production in human peripheral blood lymphocyte subsets,” Journal of Immunology, vol. 146, no. 11, pp. 3815–3823, 1991. View at Scopus
  32. E. M. Bluman, K. J. Bartynski, B. R. Avalos, and M. A. Caligiuri, “Human natural killer cells produce abundant macrophage inflammatory protein-1α in response to monocyte-derived cytokines,” Journal of Clinical Investigation, vol. 97, no. 12, pp. 2722–2727, 1996. View at Scopus
  33. T. A. Fehniger, M. H. Shah, M. J. Turner et al., “Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response,” Journal of Immunology, vol. 162, no. 8, pp. 4511–4520, 1999. View at Scopus