About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 213972, 8 pages
http://dx.doi.org/10.1155/2013/213972
Research Article

Metabolomic Analysis of Differential Changes in Metabolites during ATP Oscillations in Chondrogenesis

1Department of Physical Therapy, College of Health Science, Eulji University, Gyeonggi 461-713, Republic of Korea
2National Institute of Advanced Industrial Science and Technology, Biomedical Research Institute, Tsukuba 305-8566, Japan

Received 18 April 2013; Accepted 30 May 2013

Academic Editor: Andrei Surguchov

Copyright © 2013 Hyuck Joon Kwon and Yoshihiro Ohmiya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. V. Mariani and G. R. Martin, “Deciphering skeletal patterning: clues from the limb,” Nature, vol. 423, no. 6937, pp. 319–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. H. J. Kwon, Y. Ohmiya, K.-I. Honma et al., “Synchronized ATP oscillations have a critical role in prechondrogenic condensation during chondrogenesis,” Cell Death and Disease, vol. 3, no. 3, article e278, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. H. J. Kwon, “TGF-β but not BMP signaling induces prechondrogenic condensation through ATP oscillations during chondrogenesis,” And Biophysical Research Communication, vol. 424, no. 4, pp. 793–800, 2012. View at Publisher · View at Google Scholar
  4. H. J. Kwon, “ATP oscillations mediate inductive action of FGF and Shh signalling on prechondrogenic condensation,” Cell Biochemistry and Function, vol. 31, no. 1, pp. 75–81, 2013. View at Publisher · View at Google Scholar
  5. H. J. Kwon, “Extracellular ATP signaling via P2X4 receptor and cAMP/PKA signaling mediate ATP oscillations essential for prechondrogenic condensation,” Journal of Endocrinology, vol. 214, no. 3, pp. 337–348, 2012. View at Publisher · View at Google Scholar
  6. O. Fiehn, “Metabolomics—the link between genotypes and phenotypes,” Plant Molecular Biology, vol. 48, no. 1-2, pp. 155–171, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. W. R. Wikoff, G. Pendyala, G. Siuzdak, and H. S. Fox, “Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques,” The Journal of Clinical Investigation, vol. 118, no. 7, pp. 2661–2669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. J. Atherton, M. K. Gulston, N. J. Bailey et al., “Metabolomics of the interaction between PPAR-α and age in the PPAR-α-null mouse,” Molecular Systems Biology, vol. 5, article 259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. G. Barderas, C. M. Laborde, M. Posada et al., “Metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 790132, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Fiehn, J. Kopka, P. Dörmann, T. Altmann, R. N. Trethewey, and L. Willmitzer, “Metabolite profiling for plant functional genomics,” Nature Biotechnology, vol. 18, no. 11, pp. 1157–1161, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Soga and D. N. Neiger, “Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry,” Analytical Chemistry, vol. 72, no. 6, pp. 1236–1241, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Soga, Y. Ueno, H. Naraoka, Y. Ohashi, M. Tomita, and T. Nishioka, “Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry,” Analytical Chemistry, vol. 74, no. 10, pp. 2233–2239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Soga, Y. Ueno, H. Naraoka, K. Matsuda, M. Tomita, and T. Nishioka, “Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions,” Analytical Chemistry, vol. 74, no. 24, pp. 6224–6229, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Cao and M. Moini, “Analysis of peptides, proteins, protein digests, and whole human blood by capillary electrophoresis/electrospray ionization-mass spectrometry using an in-capillary electrode sheathless interface,” Journal of the American Society for Mass Spectrometry, vol. 9, no. 10, pp. 1081–1088, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Johnson, L. L. Houk, D. C. Johnson, and R. S. Houk, “Determination of small carboxylic acids by capillary electrophoresis with electrospray-mass spectrometry,” Analytica Chimica Acta, vol. 389, no. 1–3, pp. 1–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Shukunami, C. Shigeno, T. Atsumi, K. Ishizeki, F. Suzuki, and Y. Hiraki, “Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor,” Journal of Cell Biology, vol. 133, no. 2, pp. 457–468, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Heart, G. C. Yaney, R. F. Corkey et al., “Ca2+, NAD(P)H and membrane potential changes in pancreatic β-cells by methyl succinate: comparison with glucose,” Biochemical Journal, vol. 403, no. 1, pp. 197–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Z. Andersen, A. K. Poulsen, J. C. Brasen, and L. F. Olsen, “On-line measurements of oscillating mitochondrial membrane potential in glucose-fermenting Saccharomyces cerevisiae,” Yeast, vol. 24, no. 9, pp. 731–739, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. K. Poulsen, A. Z. Andersen, J. C. Brasen, A. M. Scharff-Poulsen, and L. F. Olsen, “Probing glycolytic and membrane potential oscillations in Saccharomyces cerevisiae,” Biochemistry, vol. 47, no. 28, pp. 7477–7484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. F. Olsen, A. Z. Andersen, A. Lunding, J. C. Brasen, and A. K. Poulsen, “Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases,” Biophysical Journal, vol. 96, no. 9, pp. 3850–3861, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. J. Rebouche and H. Seim, “Carnitine metabolism and its regulation in microorganisms and mammals,” Annual Review of Nutrition, vol. 18, pp. 39–61, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Schroeder, H. J. Atherton, M. S. Dodd et al., “The cycling of acetyl-coenzyme A through acetylcarnitine buffers cardiac substrate supply: a hyperpolarized 13C magnetic resonance study,” Circulation: Cardiovascular Imaging, vol. 5, no. 2, pp. 201–209, 2012. View at Publisher · View at Google Scholar
  23. S. Brunner, K. Kramar, D. T. Denhardt, and R. Hofbauer, “Cloning and characterization of murine carnitine acetyltransferase: evidence for a requirement during cell cycle progression,” Biochemical Journal, vol. 322, no. 2, pp. 403–410, 1997. View at Scopus
  24. J. E. Silbert and A. C. Reppucci Jr., “Biosynthesis of chondroitin sulfate. Independent addition of glucuronic acid and N acetylgalactosamine to oligosaccharides,” Journal of Biological Chemistry, vol. 251, no. 13, pp. 3942–3947, 1976. View at Scopus
  25. F. Eisenberg Jr., P. G. Dayton, and J. J. Burns, “Studies on the glucuronic acid pathway of glucose metabolism,” The Journal of biological chemistry, vol. 234, no. 2, pp. 250–253, 1959. View at Scopus
  26. D. Vigetti, M. Ori, M. Viola et al., “Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis,” Journal of Biological Chemistry, vol. 281, no. 12, pp. 8254–8263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Sochor, S. Kunjara, A. L. Greenbaum, and P. McLean, “Changes in pathways of pentose phosphate formation in relation to phosphoribosyl pyrophosphate synthesis in the developing rat kidney. Effects of glucose concentration and electron acceptors,” Journal of Developmental Physiology, vol. 12, no. 3, pp. 135–143, 1989. View at Scopus
  28. H. G. Khorana, J. F. Fernandes, and A. Kornberg, “Pyrophosphorylation of ribose 5-phosphate in the enzymatic synthesis of 5-phosphorylribose 1-pyrophosphate,” The Journal of Biological Chemistry, vol. 230, no. 2, pp. 941–948, 1958. View at Scopus
  29. E. A. Milbourne and F. L. Bygrave, “Do nitric oxide and cGMP play a role in calcium cycling?” Cell Calcium, vol. 18, no. 3, pp. 207–213, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. T. D. Bahnson, S. J. Pandol, and V. E. Dionne, “Cyclic GMP modulates depletion-activated Ca2+ entry in pancreatic acinar cells,” Journal of Biological Chemistry, vol. 268, no. 15, pp. 10808–10812, 1993. View at Scopus
  31. E. Clementi, C. Sciorati, and G. Nisticò, “Growth factor-induced Ca2+ responses are differentially modulated by nitric oxide via activation of a cyclic GMP-dependent pathway,” Molecular Pharmacology, vol. 48, no. 6, pp. 1068–1077, 1995. View at Scopus
  32. G. R. Boss and R. B. Pilz, “Phosphoribosylpyrophosphate synthesis from glucose decreases during amino acid starvation of human lymphoblasts,” Journal of Biological Chemistry, vol. 260, no. 10, pp. 6054–6059, 1985. View at Scopus
  33. D. E. Matthews, M. A. Marano, and R. G. Campbell, “Splanchnic bed utilization of glutamine and glutamic acid in humans,” American Journal of Physiology, vol. 264, no. 6, pp. E848–E854, 1993. View at Scopus
  34. M. K. Patterson Jr. and G. R. Orr, “Asparagine biosynthesis by the Novikoff Hepatoma isolation, purification, property, and mechanism studies of the enzyme system,” Journal of Biological Chemistry, vol. 243, no. 2, pp. 376–380, 1968. View at Scopus
  35. R. E. Neuman and M. A. Logan, “The determination of hydroxyproline,” The Journal of biological chemistry, vol. 184, no. 1, pp. 299–306, 1950. View at Scopus
  36. L. Vitagliano, R. Berisio, A. Mastrangelo, L. Mazzarella, and A. Zagari, “Preferred proline puckerings in cis and trans peptide groups: implications for collagen stability,” Protein Science, vol. 10, no. 12, pp. 2627–2632, 2001. View at Scopus
  37. F. W. Kotch, I. A. Guzei, and R. T. Raines, “Stabilization of the collagen triple helix by O-methylation of hydroxyproline residues,” Journal of the American Chemical Society, vol. 130, no. 10, pp. 2952–2953, 2008. View at Publisher · View at Google Scholar · View at Scopus