About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 214864, 10 pages
http://dx.doi.org/10.1155/2013/214864
Research Article

Expression of Syndecan-4 and Correlation with Metastatic Potential in Testicular Germ Cell Tumours

1Hematology Division, Department of Internal Medicine, University Hospital of Patras, 26500 Patras, Greece
2Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University Hospital of Patras, 26500 Patras, Greece
3Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
4Department of Pathology, University Hospital of Patras, 26500 Patras, Greece
5Division of Urology, Department of Medicine, University Hospital of Patras, 26500 Patras, Greece

Received 30 April 2013; Accepted 28 May 2013

Academic Editor: Martin Götte

Copyright © 2013 Vassiliki T. Labropoulou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Peng, X. Zeng, S. Peng, D. Deng, and J. Zhang, “The association risk of male subfertility and testicular cancer: a systematic review,” PloS ONE, vol. 4, no. 5, Article ID e5591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Vidrine, J. E. H. M. Hoekstra-Weebers, H. J. Hoekstra, M. A. Tuinman, S. Marani, and E. R. Gritz, “The effects of testicular cancer treatment on health-related quality of life,” Urology, vol. 75, no. 3, pp. 636–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Diéz-Torre, U. Silván, O. De Wever, E. Bruyneel, M. Mareel, and J. Aréchaga, “Germinal tumor invasion and the role of the testicular stroma,” International Journal of Developmental Biology, vol. 48, no. 5-6, pp. 545–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Heidenreich, I. A. Sesterhenn, F. K. Mostofi, and J. W. Moul, “Prognostic risk factors that identify patients with clinical stage I nonseminomatous germ cell tumors at low risk and high risk for metastasis,” Cancer, vol. 83, no. 5, pp. 1002–1011, 1998.
  5. D. C. Gilbert, I. Chandler, B. Summersgill et al., “Genomic gain and over expression of CCL2 correlate with vascular invasion in stage I non-seminomatous testicular germ-cell tumours,” International Journal of Andrology, vol. 34, no. 4, pp. e114–e121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Milia-Argeiti, E. Huet, V. T. Labropoulou, et al., “Imbalance of MMP-2 and MMP-9 expression versus TIMP-1 and TIMP-2 reflects increased invasiveness of human testicular germ cell tumours,” International Journal of Andrology, vol. 35, no. 6, pp. 835–844, 2012.
  7. A. D. Theocharis, D. H. Vynios, N. Papageorgakopoulou, S. S. Skandalis, and D. A. Theocharis, “Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 3, pp. 376–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. S. Skandalis, V. T. Labropoulou, P. Ravazoula et al., “Versican but not decorin accumulation is related to malignancy in mammographically detected high density and malignant-appearing microcalcifications in non-palpable breast carcinomas,” BMC Cancer, vol. 11, article 314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. D. Theocharis, “Human colon adenocarcinoma is associated with specific post-translational modifications of versican and decorin,” Biochimica et Biophysica Acta, vol. 1588, no. 2, pp. 165–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Tímár, K. Lapis, J. Dudás, A. Sebestyén, L. Kopper, and I. Kovalszky, “Proteoglycans and tumor progression: janus-faced molecules with contradictory functions in cancer,” Seminars in Cancer Biology, vol. 12, no. 3, pp. 173–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. A. D. Theocharis, S. S. Skandalis, G. N. Tzanakakis, and N. K. Karamanos, “Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting,” FEBS Journal, vol. 277, no. 19, pp. 3904–3923, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. V. T. Labropoulou, A. D. Theocharis, P. Ravazoula et al., “Versican but not decorin accumulation is related to metastatic potential and neovascularization in testicular germ cell tumours,” Histopathology, vol. 49, no. 6, pp. 582–593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Couchman, “Transmembrane signaling proteoglycans,” Annual Review of Cell and Developmental Biology, vol. 26, pp. 89–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D. M. Beauvais and A. C. Rapraeger, “Syndecan-1-mediated cell spreading requires signaling by αvβ3 integrins in human breast carcinoma cells,” Experimental Cell Research, vol. 286, no. 2, pp. 219–232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Clasper, S. Vekemans, M. Fiore et al., “Inducible expression of the cell surface heparan sulfate proteoglycan syndecan-2 (fibroglycan) on human activated macrophages can regulate fibroblast growth factor action,” Journal of Biological Chemistry, vol. 274, no. 34, pp. 24113–24123, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Mundhenke, K. Meyer, S. Drew, and A. Friedl, “Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 receptor binding in breast carcinomas,” American Journal of Pathology, vol. 160, no. 1, pp. 185–194, 2002. View at Scopus
  17. M. P. O'Connell, J. L. Fiori, E. K. Kershner et al., “Heparan sulfate proteoglycan modulation of Wnt5A signal transduction in metastatic melanoma cells,” Journal of Biological Chemistry, vol. 284, no. 42, pp. 28704–28712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Carvallo, R. Muñoz, F. Bustos et al., “Non-canonical Wnt signaling induces ubiquitination and degradation of Syndecan4,” Journal of Biological Chemistry, vol. 285, no. 38, pp. 29546–29555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Brule, V. Friand, A. Sutton, F. Baleux, L. Gattegno, and N. Charnaux, “Glycosaminoglycans and syndecan-4 are involved in SDF-1/CXCL12-mediated invasion of human epitheloid carcinoma HeLa cells,” Biochimica et Biophysica Acta, vol. 1790, no. 12, pp. 1643–1650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Charni, V. Friand, O. Haddad et al., “Syndecan-1 and syndecan-4 are involved in RANTES/CCL5-induced migration and invasion of human hepatoma cells,” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 1314–1326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Vuoriluoto, G. Högnäs, P. Meller, K. Lehti, and J. Ivaska, “Syndecan-1 and -4 differentially regulate oncogenic K-ras dependent cell invasion into collagen through α2β1 integrin and MT1-MMP,” Matrix Biology, vol. 30, no. 3, pp. 207–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Bouskine, A. Vega, M. Nebout, M. Benahmed, and P. Fénichel, “Expression of embryonic stem cell markers in cultured JKT-1, a cell line derived from a human seminoma,” International Journal of Andrology, vol. 33, no. 1, pp. 54–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Baba, K. Swartz, R. Van Buren et al., “Syndecan-1 and syndecan-4 are overexpressed in an estrogen receptor-negative, highly proliferative breast carcinoma subtype,” Breast Cancer Research and Treatment, vol. 98, no. 1, pp. 91–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. E. Lendorf, T. Manon-Jensen, P. Kronqvist, H. A. B. Multhaupt, and J. R. Couchman, “Syndecan-1 and syndecan-4 are independent indicators in breast carcinoma,” Journal of Histochemistry and Cytochemistry, vol. 59, no. 6, pp. 615–629, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. O. C. Kousidou, A. Berdiaki, D. Kletsas et al., “Estradiol-estrogen receptor: a key interplay of the expression of syndecan-2 and metalloproteinase-9 in breast cancer cells,” Molecular Oncology, vol. 2, no. 3, pp. 223–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Nikolova, C.-Y. Koo, S. A. Ibrahim et al., “Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression,” Carcinogenesis, vol. 30, no. 3, pp. 397–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Kato, S. Saunders, H. Nguyen, and M. Bernfield, “Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells,” Molecular Biology of the Cell, vol. 6, no. 5, pp. 559–576, 1995. View at Scopus
  28. S. Leppa, K. Vleminckx, F. Van Roy, and M. Jalkanen, “Syndecan-1 expression in mammary epithelial tumor cells is E-cadherin-dependent,” Journal of Cell Science, vol. 109, no. 6, pp. 1393–1403, 1996. View at Scopus
  29. A. Anttonen, M. Kajanti, P. Heikkilä, M. Jalkanen, and H. Joensuu, “Syndecan-1 expression has prognostic significance in head and neck carcinoma,” British Journal of Cancer, vol. 79, no. 3-4, pp. 558–564, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. J. P. Wiksten, J. Lundin, S. Nordling, et al., “Epithelial and stromal syndecan-1 expression as predictor of outcome in patients with gastric cancer,” International Journal of Cancer, vol. 95, no. 1, pp. 1–6, 2001.
  31. M. Fujiya, J. Watari, T. Ashida et al., “Reduced expression of syndecan-1 affects metastatic potential and clinical outcome in patients with colorectal cancer,” Japanese Journal of Cancer Research, vol. 92, no. 10, pp. 1074–1081, 2001. View at Scopus
  32. J. Klatka, “Syndecan-1 expression in laryngeal cancer,” European Archives of Oto-Rhino-Laryngology, vol. 259, no. 3, pp. 115–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Harada, S. Masuda, M. Hirano, and Y. Nakanuma, “Reduced expression of syndecan-1 correlates with histologic dedifferentiation, lymph node metastasis, and poor prognosis in intrahepatic cholangiocarcinoma,” Human Pathology, vol. 34, no. 9, pp. 857–863, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Kumar-Singh, W. Jacobs, K. Dhaene, et al., “Syndecan-1 expression in malignant mesothelioma: correlation with cell differentiation, WT1 expression, and clinical outcome,” Journal of Pathology, vol. 186, no. 3, pp. 300–305, 1998.
  35. A. Matsumoto, M. Ono, Y. Fujimoto, R. L. Gallo, M. Bernfield, and Y. Kohgo, “Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential,” International Journal of Cancer, vol. 74, no. 5, pp. 482–491, 1997.
  36. L. Shah, K. L. Walter, A. C. Borczuk et al., “Expression of syndecan-1 and expression of epidermal growth factor receptor are associated with survival in patients with nonsmall cell lung carcinoma,” Cancer, vol. 101, no. 7, pp. 1632–1638, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Woods and J. R. Couchman, “Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component,” Molecular Biology of the Cell, vol. 5, no. 2, pp. 183–192, 1994. View at Scopus
  38. A. Woods and J. R. Couchman, “Syndecan-4 and focal adhesion function,” Current Opinion in Cell Biology, vol. 13, no. 5, pp. 578–583, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. A. C. Rapraeger, “Syndecan-regulated receptor signaling,” Journal of Cell Biology, vol. 149, no. 5, pp. 995–997, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Woods, R. L. Longley, S. Tumova, and J. R. Couchman, “Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts,” Archives of Biochemistry and Biophysics, vol. 374, no. 1, pp. 66–72, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. S. A. Wilcox-Adelman, F. Denhez, and P. F. Goetinck, “Syndecan-4 modulates focal adhesion kinase phosphorylation,” Journal of Biological Chemistry, vol. 277, no. 36, pp. 32970–32977, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. L. A. Cary, J. F. Chang, and J.-L. Guan, “Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn,” Journal of Cell Science, vol. 109, no. 7, pp. 1787–1794, 1996. View at Scopus
  43. S. Saoncella, F. Echtermeyer, F. Denhez et al., “Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 2805–2810, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. S.-T. Lim, R. L. Longley, J. R. Couchman, and A. Woods, “Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase Cα (PKCα) increases focal adhesion localization of PKCα,” Journal of Biological Chemistry, vol. 278, no. 16, pp. 13795–13802, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. E.-S. Oh, A. Woods, and J. R. Couchman, “Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C,” Journal of Biological Chemistry, vol. 272, no. 13, pp. 8133–8136, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Horowitz, E. Tkachenko, and M. Simons, “Fibroblast growth factor-specific modulation of cellular response by syndecan-4,” Journal of Cell Biology, vol. 157, no. 4, pp. 715–725, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Chalkiadaki, D. Nikitovic, A. Berdiaki et al., “Fibroblast growth factor-2 modulates melanoma adhesion and migration through a syndecan-4-dependent mechanism,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 6, pp. 1323–1331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. L. Longley, A. Woods, A. Fleetwood, G. J. Cowling, J. T. Gallagher, and J. R. Couchman, “Control of morphology, cytoskeleton and migration by syndecan-4,” Journal of Cell Science, vol. 112, no. 20, pp. 3421–3431, 1999. View at Scopus
  49. K. S. Midwood, Y. Mao, H. C. Hsia, L. V. Valenick, and J. E. Schwarzbauer, “Modulation of cell-fibronectin matrix interactions during tissue repair,” Journal of Investigative Dermatology Symposium Proceedings, vol. 11, no. 1, pp. 73–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. J. Stanley, M. W. Stanley, R. D. Sanderson, and R. Zera, “Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma,” American Journal of Clinical Pathology, vol. 112, no. 3, pp. 377–383, 1999. View at Scopus
  51. D. Mennerich, A. Vogel, I. Klaman et al., “Shift of syndecan-1 expression from epithelial to stromal cells during progression of solid tumours,” European Journal of Cancer, vol. 40, no. 9, pp. 1373–1382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Maeda, C. M. Alexander, and A. Friedl, “Induction of syndecan-1 expression in stromal fibroblasts promotes proliferation of human breast cancer cells,” Cancer Research, vol. 64, no. 2, pp. 612–621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Maeda, J. Desouky, and A. Friedl, “Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis,” Oncogene, vol. 25, no. 9, pp. 1408–1412, 2006. View at Publisher · View at Google Scholar · View at Scopus