About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 215283, 13 pages
http://dx.doi.org/10.1155/2013/215283
Research Article

PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 México, DF, Mexico

Received 11 August 2012; Revised 6 December 2012; Accepted 11 December 2012

Academic Editor: Jorge Morales-Montor

Copyright © 2013 J. A. Díaz-Gandarilla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Who, “Leishmaniasis,” 2012, http://www.who.int/topics/leishmaniasis/en/.
  2. F. A. Torrentera, M. A. Lambot, J. D. Laman et al., “Parasitic load and histopathology of cutaneous lesions, lymph node, spleen, and liver from BALB/c and C57BL/6 mice infected with Leishmania mexicana,” American Journal of Tropical Medicine and Hygiene, vol. 66, no. 3, pp. 273–279, 2002. View at Scopus
  3. L. E. Rosas, T. Keiser, J. Barbi et al., “Genetic background influences immune responses and disease outcome of cutaneous L. mexicana infection in mice,” International Immunology, vol. 17, no. 10, pp. 1347–1357, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Braissant, F. Foufelle, C. Scotto, M. Dauça, and W. Wahli, “Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat,” Endocrinology, vol. 137, no. 1, pp. 354–366, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Chan, K. W. Evans, A. R. Moore, and D. Fong, “Peroxisome proliferator-activated receptor (PPAR): balance for survival in parasitic infections,” Journal of Biomedicine & Biotechnology, vol. 2010, Article ID 828951, 9 pages, 2010. View at Publisher · View at Google Scholar
  6. U. Ritter, J. Mattner, J. S. Rocha, C. Bogdan, and H. Körner, “The control of Leishmania (Leishmania) major by TNF in vivo is dependent on the parasite strain,” Microbes and Infection, vol. 6, no. 6, pp. 559–565, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Chatelain, S. Mauze, and R. L. Coffman, “Experimental Leishmania major infection in mice: role of IL-10,” Parasite Immunology, vol. 21, no. 4, pp. 211–218, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. U. M. Padigel, J. Alexander, and J. P. Farrell, “The role of interleukin-10 in susceptibility of BALB/c mice to infection with Leishmania mexicana and Leishmania amazonensis,” Journal of Immunology, vol. 171, no. 7, pp. 3705–3710, 2003. View at Scopus
  9. T. Krakauer, “Molecular therapeutic targets in inflammation: cyclooxygenase and NF-κB,” Current Drug Targets, vol. 3, no. 3, pp. 317–324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. He, B. Zhai, A. Mancini, and J. A. Di Battista, “438 Modulation of the inflammatory and catabolic response by prostaglandin E2 (PGE2) is partially dependent on the induction of dual specificity phosphatase 1 (DUSP-1) in vitro and in vivo,” Osteoarthritis and Cartilage, vol. 16, supplement 4, pp. S190–S191, 2008.
  11. W. H. Faour, N. Alaaeddine, A. Mancini, W. H. Qing, D. Jovanovic, and J. A. Di Battista, “Early growth response factor-1 mediates prostaglandin E2-dependent transcriptional suppression of cytokine-induced tumor necrosis factor-α gene expression in human macrophages and rheumatoid arthritis-affected synovial fibroblasts,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9536–9546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Giuliano and T. D. Warner, “Origins of prostaglandin E2: involvements of cyclooxygenase (COX)-1 and COX-2 in human and rat systems,” Journal of Pharmacology and Experimental Therapeutics, vol. 303, no. 3, pp. 1001–1006, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. W. He, J. P. Pelletier, J. Martel-Pelletier, S. Laufer, and J. A. Di Battista, “Synthesis of interleukin 1β, tumor necrosis factor-α, and interstitial collagenase (MMP-1) is eicosanoid dependent in human osteoarthritis synovial membrane explants: interactions with antiinflammatory cytokines,” Journal of Rheumatology, vol. 29, no. 3, pp. 546–553, 2002. View at Scopus
  14. J. L. M. Pérez-Santos and P. Talamás-Rohana, “In vitro indomethacin administration upregulates interleukin-12 production and polarizes the immune response towards a Th1 type in susceptible BALB/c mice infected with Leishmania mexicana,” Parasite Immunology, vol. 23, no. 11, pp. 599–606, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Van Assche, M. Deschacht, R. A. I. Da Luz, L. Maes, and P. Cos, “Leishmania-macrophage interactions: insights into the redox biology,” Free Radical Biology and Medicine, vol. 51, no. 2, pp. 337–351, 2011. View at Publisher · View at Google Scholar
  16. L. A. Estrada-Figueroa, Y. Ramírez-Jiménez, C. Osorio-Trujillo et al., “Absence of CD38 delays arrival of neutrophils to the liver and innate immune response development during hepatic amoebiasis by Entamoeba histolytica,” Parasite Immunology, vol. 33, no. 12, pp. 661–668, 2011. View at Publisher · View at Google Scholar
  17. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Nessa, L. Palmberg, U. Johard, P. Malmberg, C. Jarstrand, and P. Camner, “Reaction of human alveolar macrophages to exposure to Aspergillus fumigatus and inert particles,” Environmental Research, vol. 75, no. 2, pp. 141–148, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Muñoz and W. Alfaro, “Estandarización de la técnica de reducción del NBT mediante lectura en placas de microELISA,” Revista Médica del Hospital Nacional de Niños Dr. Carlos Sáenz Herrera, vol. 35, pp. 29–39, 2000.
  20. D. S. Straus and C. K. Glass, “Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms,” Trends in Immunology, vol. 28, no. 12, pp. 551–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. J. Bright, S. Kanakasabai, W. Chearwae, and S. Chakraborty, “PPAR regulation of inflammatory signaling in CNS diseases,” PPAR Research, vol. 2008, Article ID 658520, 12 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Ringseis, N. Schulz, D. Saal, and K. Eder, “Troglitazone but not conjugated linoleic acid reduces gene expression and activity of matrix-metalloproteinases-2 and -9 in PMA-differentiated THP-1 macrophages,” Journal of Nutritional Biochemistry, vol. 19, no. 9, pp. 594–603, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Matte and M. Olivier, “Leishmania-induced cellular recruitment during the early inflammatory response: modulation of proinflammatory mediators,” Journal of Infectious Diseases, vol. 185, no. 5, pp. 673–681, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The chemokine system in diverse forms of macrophage activation and polarization,” Trends in Immunology, vol. 25, no. 12, pp. 677–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Gallardo-Soler, C. Gómez-Nieto, M. L. Campo et al., “Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-γ/δ-mediated effect that links lipid metabolism and immunity,” Molecular Endocrinology, vol. 22, no. 6, pp. 1394–1402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Adapala and M. M. Chan, “Long-term use of an antiinflammatory, curcumin, suppressed type 1 immunity and exacerbated visceral Leishmaniasis in a chronic experimental model,” Laboratory Investigation, vol. 88, no. 12, pp. 1329–1339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. C. Noverr, J. R. Erb-Downward, and G. B. Huffnagle, “Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes,” Clinical Microbiology Reviews, vol. 16, no. 3, pp. 517–533, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. C. C. Leslie, “Properties and regulation of cytosolic phospholipase A2,” Journal of Biological Chemistry, vol. 272, no. 27, pp. 16709–16712, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Okamoto, K. Saeki, H. Sumimoto, S. Yamasaki, and T. Yokomizo, “Leukotriene B4 augments and restores FcγRs-dependent phagocytosis in macrophages,” Journal of Biological Chemistry, vol. 285, no. 52, pp. 41113–41121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Matte, G. Maion, W. Mourad, and M. Olivier, “Leishmania donovani-induced macrophages cyclooxygenase-2 and prostaglandin E2 synthesis,” Parasite Immunology, vol. 23, no. 4, pp. 177–184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Pawliczak, C. Han, X. L. Huang, A. Jake Demetris, J. H. Shelhamer, and T. Wu, “85-kDa cytosolic phospholipase A2 mediates peroxisome proliferator-activated receptor γ activation in human lung epithelial cells,” Journal of Biological Chemistry, vol. 277, no. 36, pp. 33153–33163, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Pawliczak, C. Logun, P. Madara et al., “Cytosolic phospholipase A2 Group IVα but not secreted phospholipase A2 Group IIA, V, or X induces interleukin-8 and cyclooxygenase-2 gene and protein expression through peroxisome proliferator-activated receptors γ 1 and 2 in human lung cells,” Journal of Biological Chemistry, vol. 279, no. 47, pp. 48550–48561, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003.
  34. S. Gordon and P. R. Taylor, “Monocyte and macrophage heterogeneity,” Nature Reviews Immunology, vol. 5, no. 12, pp. 953–964, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, “Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression,” Journal of Immunology, vol. 177, no. 10, pp. 7303–7311, 2006. View at Scopus
  36. K. Ishihara, A. Kuroda, K. Sugihara, S. Kanai, and T. Nabe, “Regulation of macrophage differentiation and polarization by group IVC phospholipase A2,” Biochemical and Biophysical Research Communications, vol. 416, no. 3-4, pp. 325–330, 2011. View at Publisher · View at Google Scholar
  37. M. L. Rodriguez, S. Rodriguez, A. E. Gonzalez et al., “Can taenia solium latent post-oncospheral stages be found in muscle tissue of cysticercosis-infected pigs (Sus scrofa)?” Journal of Parasitology, vol. 92, no. 1, pp. 199–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Bosisio, N. Polentarutti, M. Sironi et al., “Stimulation of toll-like receptor 4 expression in human mononuclear phagocytes by interferon-γ: a molecular basis for priming and synergism with bacterial lipopolysaccharide,” Blood, vol. 99, no. 9, pp. 3427–3431, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth et al., “Macrophage-specific PPARγ controls alternative activation and improves insulin resistance,” Nature, vol. 447, no. 7148, pp. 1116–1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. M. Chan, N. Adapala, and C. Chen, “Peroxisome proliferator-activated receptor-γ-mediated polarization of macrophages in Leishmania infection,” PPAR Research, vol. 2012, Article ID 796235, 11 pages, 2012. View at Publisher · View at Google Scholar
  41. A. D. Mancini and J. A. Di Battista, “The cardinal role of the phospholipase A2/cyclooxygenase-2/prostaglandin e synthase/prostaglandin E2 (PCPP) axis in inflammostasis,” Inflammation Research, vol. 60, no. 12, pp. 1083–1092, 2011. View at Publisher · View at Google Scholar
  42. P. Akarasereenont, K. Techatrisak, S. Chotewuttakorn, and A. Thaworn, “The induction of cyclooxygenase-2 in IL-1β-treated endothelial cells is inhibited by prostaglandin E2 through cAMP,” Mediators of Inflammation, vol. 8, no. 6, pp. 287–294, 1999. View at Scopus
  43. H. W. Murray, “Cell-mediated immune response in experimental visceral Leishmaniasis. II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes,” Journal of Immunology, vol. 129, no. 1, pp. 351–357, 1982. View at Scopus
  44. J. H. Zarley, B. E. Britigan, and M. E. Wilson, “Hydrogen peroxide-mediated toxicity for Leishmania donovani chagasi promastigotes: role of hydroxyl radical and protection by heat shock,” Journal of Clinical Investigation, vol. 88, no. 5, pp. 1511–1521, 1991. View at Scopus
  45. J. F. Dermine, G. Goyette, M. Houde, S. J. Turco, and M. Desjardins, “Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages,” Cellular Microbiology, vol. 7, no. 9, pp. 1263–1270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Stachowska, M. Baśkiewicz-Masiuk, V. Dziedziejko et al., “Conjugated linoleic acid increases intracellular ROS synthesis and oxygenation of arachidonic acid in macrophages,” Nutrition, vol. 24, no. 2, pp. 187–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Gervois, J. C. Fruchart, and B. Staels, “Drug insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors,” Nature Clinical Practice Endocrinology and Metabolism, vol. 3, no. 2, pp. 145–156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Serghides, S. N. Patel, K. Ayi et al., “Rosiglitazone modulates the innate immune response to plasmodium falciparum infection and improves outcome in experimental cerebral malaria,” Journal of Infectious Diseases, vol. 199, no. 10, pp. 1536–1545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. M. J. Teixeira, J. Dumet Fernandes, C. Romero Teixeira et al., “Distinct Leishmania braziliensis isolates induce different paces of chemokine expression patterns,” Infection and Immunity, vol. 73, no. 2, pp. 1191–1195, 2005. View at Publisher · View at Google Scholar · View at Scopus