About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 218543, 10 pages
http://dx.doi.org/10.1155/2013/218543
Research Article

Differentiation of Mesenchymal Stem Cells from Human Umbilical Cord Tissue into Odontoblast-Like Cells Using the Conditioned Medium of Tooth Germ Cells In Vitro

1Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
2Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
3The Key Laboratory of Cell Transplantation of the Ministry of Health and Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
4Department of Dentistry, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
5Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China

Received 2 November 2012; Accepted 8 April 2013

Academic Editor: Barry J. Byrne

Copyright © 2013 Tian Xia Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The easily accessible mesenchymal stem cells in the Wharton's jelly of human umbilical cord tissue (hUCMSCs) have excellent proliferation and differentiation potential, but it remains unclear whether hUCMSCs can differentiate into odontoblasts. In this study, mesenchymal stem cells were isolated from the Wharton's jelly of human umbilical cord tissue using the simple method of tissue blocks culture attachment. UCMSC surface marker expression was then evaluated for the isolated cells using flow cytometry. The third-passage hUCMSCs induced by conditioned medium from developing tooth germ cells (TGC-CM) displayed high alkaline phosphatase (ALP) levels ( ), an enhanced ability to proliferate ( ), and the presence of mineralized nodules. These effects were not observed in cells treated with regular medium. After induction of hUCMSCs, the results of reverse transcriptional polymerase chain reaction (PCR) indicated that the dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) genes were significantly tested. Additionally, dentin sialoprotein (DSP) and DMP1 demonstrated significant levels of staining in an immunofluorescence analysis. In contrast, the control cells failed to display the characteristics of odontoblasts. Taken together, these results suggest that hUCMSCs can be induced to differentiate into odontoblast-like cells with TGC-CM and provide a novel strategy for tooth regeneration research.