About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 236850, 8 pages
http://dx.doi.org/10.1155/2013/236850
Research Article

Exploring Different Virtual Screening Strategies for Acetylcholinesterase Inhibitors

Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi 835215, India

Received 11 April 2013; Revised 12 August 2013; Accepted 4 September 2013

Academic Editor: J. Guy Guillemette

Copyright © 2013 Nibha Mishra and Arijit Basu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science., E. R. Kandel, Ed., Appleton & Lange, Norwalk, Conn, USA, 1991.
  2. S. Moghul and D. Wilkinson, “Use of acetylcholinesterase inhibitors in Alzheimer's disease,” Expert Review of Neurotherapeutics, vol. 1, no. 1, pp. 61–69, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. W. L. M. Alward, “Medical management of glaucoma,” New England Journal of Medicine, vol. 339, no. 18, pp. 1298–1307, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Lindstrom, “Acetylcholine receptors and myasthenia,” Muscle & Nerve, vol. 23, pp. 453–477, 2000.
  5. P. Taylor, Goodman & Gilman's the Pharmacological Basis of therapeutics, J. G. Hardman, L. E. Limbird, and A. G.Gilman, Eds., 2001.
  6. J. Guo, M. M. Hurley, J. B. Wright, and G. H. Lushington, “A docking score function for estimating ligand-protein interactions: application to acetylcholinesterase inhibition,” Journal of Medicinal Chemistry, vol. 47, no. 22, pp. 5492–5500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Y. Mizutani and A. Itai, “Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors,” Journal of Medicinal Chemistry, vol. 47, no. 20, pp. 4818–4828, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Rollinger, A. Hornick, T. Langer, H. Stuppner, and H. Prast, “Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products,” Journal of Medicinal Chemistry, vol. 47, no. 25, pp. 6248–6254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Glide, Schrödinger, LLC, New York, NY, USA, 2008.
  10. ROCS 2.3.1, OpenEye Scientific Software, Santa Fe, NM, USA, 2007.
  11. EON 2.0.1., OpenEye Scientific Software, Santa Fe, NM, USA, 2007.
  12. N. Huang, B. K. Shoichet, and J. J. Irwin, “Benchmarking sets for molecular docking,” Journal of Medicinal Chemistry, vol. 49, no. 23, pp. 6789–6801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. OMEGA 2.3.2, OpenEye Scientific Software, Santa Fe, NM, USA, 2008.
  14. I. W. Davis, A. Leaver-Fay, V. B. Chen et al., “MolProbity: all-atom contacts and structure validation for proteins and nucleic acids,” Nucleic acids research, vol. 35, pp. W375–W383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Sharma, K. K. Pattanaik, V. Jayprakash, A. Basu, and N. Mishra, “A utility script for automating and integrating AutoDock and other associated programs for virtual screening,” Bioinformation, vol. 4, pp. 84–86, 2009. View at Publisher · View at Google Scholar
  16. S. L. Dixon, A. M. Smondyrev, E. H. Knoll, S. N. Rao, D. E. Shaw, and R. A. Friesner, “PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results,” Journal of Computer-Aided Molecular Design, vol. 20, no. 10-11, pp. 647–671, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. L. Dixon, A. M. Smondyrev, and S. N. Rao, “PHASE: a novel approach to pharmacophore modeling and 3D database searching,” Chemical Biology and Drug Design, vol. 67, no. 5, pp. 370–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Bender and R. C. Glen, “A discussion of measures of enrichment in virtual screening: Comparing the information content of descriptors with increasing levels of sophistication,” Journal of Chemical Information and Modeling, vol. 45, no. 5, pp. 1369–1375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Lovell, H. Chen, P. D. Lyne, F. Giordanetto, and J. Li, “Erratum: On evaluating molecular-docking methods for pose prediction and enrichment factors (Journal of Chemical Information and Modeling (2006) 46 (401-415)),” Journal of Chemical Information and Modeling, vol. 48, no. 1, p. 246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. N. Jain and A. Nicholls, “Recommendations for evaluation of computational methods,” Journal of Computer-Aided Molecular Design, vol. 22, no. 3-4, pp. 133–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Stahl and M. Rarey, “Detailed analysis of scoring functions for virtual screening,” Journal of Medicinal Chemistry, vol. 44, no. 7, pp. 1035–1042, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J.-F. Truchon and C. I. Bayly, “Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem,” Journal of Chemical Information and Modeling, vol. 47, no. 2, pp. 488–508, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Triballeau, F. Acher, I. Brabet, J.-P. Pin, and H.-O. Bertrand, “Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4,” Journal of Medicinal Chemistry, vol. 48, no. 7, pp. 2534–2547, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Bar-On, C. B. Millard, M. Harel et al., “Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine,” Biochemistry, vol. 41, no. 11, pp. 3555–3564, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Kryger, I. Silman, and J. L. Sussman, “Structure of acetylcholinesterase complexed with E2020 (Ariceptρ): implications for the design of new anti-Alzheimer drugs,” Structure, vol. 7, no. 3, pp. 297–307, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Dvir, H. L. Jiang, D. M. Wong et al., “X-ray structures of Torpedo californica acetylcholinesterase complexed with (+)-huperzine A and (-)-huperzine B: structural evidence for an active site rearrangement,” Biochemistry, vol. 41, no. 35, pp. 10810–10818, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. E. H. Rydberg, B. Brumshtein, H. M. Greenblatt et al., “Complexes of Alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of bis(5)-tacrine produces a dramatic rearrangement in the active-site gorge,” Journal of Medicinal Chemistry, vol. 49, no. 18, pp. 5491–5500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Tumiatti, V. Andrisano, R. Banzi et al., “Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 3. Effect of replacing the inner polymethylene chain with cyclic moieties,” Journal of Medicinal Chemistry, vol. 47, no. 26, pp. 6490–6498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Melchiorre, V. Andrisano, M. L. Bolognesi et al., “Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer's disease,” Journal of Medicinal Chemistry, vol. 41, no. 22, pp. 4186–4189, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Lin, G.-H. Chen, and H.-C. Ho, “Conformationally restricted carbamate inhibitors of horse serum butyrylcholinesterase,” Bioorganic and Medicinal Chemistry Letters, vol. 8, no. 19, pp. 2747–2750, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Tasso, M. Catto, O. Nicolotti et al., “Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer's disease,” European Journal of Medicinal Chemistry, vol. 46, no. 6, pp. 2170–2184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Luo, Q.-S. Yu, S. S. Kulkarni et al., “Inhibition of human acetyl- and butyrylcholinesterase by novel carbamates of (-)- and (+)-tetrahydrofurobenzofuran and methanobenzodioxepine,” Journal of Medicinal Chemistry, vol. 49, no. 7, pp. 2174–2185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Savini, G. Campiani, A. Gaeta et al., “Novel and potent tacrine-related hetero- and homobivalent ligands for acetylcholinesterase and butyrylcholinesterase,” Bioorganic and Medicinal Chemistry Letters, vol. 11, no. 13, pp. 1779–1782, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Bencharit, C. L. Morton, J. L. Hyatt et al., “Crystal structure of human carboxylesterase 1 complexed with the Alzheimer's drug tacrine: from binding promiscuity to selective inhibition,” Chemistry and Biology, vol. 10, no. 4, pp. 341–349, 2003. View at Publisher · View at Google Scholar · View at Scopus