About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 239257, 10 pages
http://dx.doi.org/10.1155/2013/239257
Research Article

An Inherited Heteroplasmic Mutation in Mitochondrial Gene COI in a Patient with Prostate Cancer Alters Reactive Oxygen, Reactive Nitrogen and Proliferation

1Department of Urology, School of Medicine, Emory University, 1365 Clifton Rd. Building B, Atlanta, GA 30322, USA
2Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
3Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA 92697, USA
4Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
5Department of Urology, The Atlanta VA Medical Center, Decatur, GA 30033, USA
6Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
7Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA

Received 6 June 2012; Revised 8 August 2012; Accepted 9 August 2012

Academic Editor: Gurmit Singh

Copyright © 2013 Rebecca S. Arnold et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Wallace, “A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine,” Annual Review of Genetics, vol. 39, pp. 359–407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. I. Zhadanov, E. Y. Grechanina, Y. B. Grechanina et al., “Fatal manifestation of a de novo ND5 mutation: insights into the pathogenetic mechanisms of mtDNA ND5 gene defects,” Mitochondrion, vol. 7, no. 4, pp. 260–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Fan, K. G. Waymire, N. Narula et al., “A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations,” Science, vol. 319, no. 5865, pp. 958–962, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Gómez-Zaera, J. Abril, L. González et al., “Identification of somatic and germline mitochondrial DNA sequence variants in prostate cancer patients,” Mutation Research, vol. 595, no. 1-2, pp. 42–51, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Petros, A. K. Baumann, E. Ruiz-Pesini et al., “MtDNA mutations increase tumorigenicity in prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 719–724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Ray, K. A. Zuhlke, A. M. Levin, J. A. Douglas, K. A. Cooney, and J. A. Petros, “Sequence variation in the mitochondrial gene cytochrome c oxidase subunit I and prostate cancer in African American men,” Prostate, vol. 69, no. 9, pp. 956–960, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Jerónimo, S. Nomoto, O. L. Caballero et al., “Mitochondrial mutations in early stage prostate cancer and bodily fluids,” Oncogene, vol. 20, no. 37, pp. 5195–5198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Higuchi, T. Kudo, S. Suzuki et al., “Mitochondrial DNA determines androgen dependence in prostate cancer cell lines,” Oncogene, vol. 25, no. 10, pp. 1437–1445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Mizumachi, L. Muskhelishvili, A. Naito et al., “Increased distributional variance of mitochondrial DNA content associated with prostate cancer cells as compared with normal prostate cells,” Prostate, vol. 68, no. 4, pp. 408–417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Maki, K. Robinson, B. Reguly et al., “Mitochondrial genome deletion aids in the identification of false- and true-negative prostate needle core biopsy specimens,” American Journal of Clinical Pathology, vol. 129, no. 1, pp. 57–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. A. Aldridge, S. D. Lim, A. K. Baumann et al., “Automated sequencing of complete mitochondrial genomes from laser-capture microdissected samples,” BioTechniques, vol. 35, no. 3, pp. 606–612, 2003. View at Scopus
  12. J. M. Seigneurin, B. Guilbert, M. J. Bourgeat, and S. Avrameas, “Polyspecific natural antibodies and autoantibodies secreted by human lymphocytes immortalized with Epstein-Barr virus,” Blood, vol. 71, no. 3, pp. 581–585, 1988. View at Scopus
  13. L. C. Costello, Z. Guan, B. Kukoyi, P. Feng, and R. B. Franklin, “Terminal oxidation and the effects of zinc in prostate versus liver mitochondria,” Mitochondrion, vol. 4, no. 4, pp. 331–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  15. D. Hammond-McKibben, P. Lake, J. Zhang, N. Tart-Risher, R. Hugo, and M. Weetall, “A high-capacity quantitative mouse model of drug-mediated immunosuppression based on rejection of an allogeneic subcutaneous tumor,” Journal of Pharmacology and Experimental Therapeutics, vol. 297, no. 3, pp. 1144–1151, 2001. View at Scopus
  16. M. Ingman and U. Gyllensten, “mtDB: human mitochondrial genome database, a resource for population genetics and medical sciences,” Nucleic Acids Research, vol. 34, pp. D749–751, 2006. View at Scopus
  17. J. F. Turrens, “Mitochondrial formation of reactive oxygen species,” Journal of Physiology, vol. 552, no. 2, pp. 335–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Polyak, Y. Li, H. Zhu et al., “Somatic mutations of the mitochondrial genome in human colorectal tumours,” Nature Genetics, vol. 20, no. 3, pp. 291–293, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. T. A. Scott, R. Arnold, and J. A. Petros, “Mitochondrial cytochrome c osidase subunit 1 sequence variation in prostate cancer,” Scientifica, vol. 2012, Article ID 701810, 7 pages, 2012. View at Publisher · View at Google Scholar
  20. Y. Zhang, Y. Du, W. Le, K. Wang, N. Kieffer, and J. Zhang, “Redox control of the survival of healthy and diseased cells,” Antioxid Redox Signal, vol. 15, no. 11, pp. 2867–2908, 2011.
  21. D. Ziech, R. Franco, A. Pappa, and M. I. Panayiotidis, “Reactive Oxygen Species (ROS)—induced genetic and epigenetic alterations in human carcinogenesis,” Mutation Research, vol. 711, no. 1-2, pp. 167–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Gupta-Elera, A. R. Garrett, R. A. Robison, and K. L. O'Neill, “The role of oxidative stress in prostate cancer,” European Journal of Cancer Prevention, vol. 21, no. 2, pp. 155–162, 2012.
  23. T. P. Szatrowski and C. F. Nathan, “Production of large amounts of hydrogen peroxide by human tumor cells,” Cancer Research, vol. 51, no. 3, pp. 794–798, 1991. View at Scopus
  24. H. Wiseman and B. Halliwell, “Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer,” Biochemical Journal, vol. 313, pp. 17–29, 1996. View at Scopus
  25. O. Warburg, “On respiratory impairment in cancer cells,” Science, vol. 124, no. 3215, pp. 269–270, 1956. View at Scopus
  26. C. S. Cobbs, J. E. Brenman, K. D. Aldape, D. S. Bredt, and M. A. Israel, “Expression of nitric oxide synthase in human central nervous system tumors,” Cancer Research, vol. 55, no. 4, pp. 727–730, 1995. View at Scopus
  27. S. Ambs, W. G. Merriam, W. P. Bennett et al., “Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression,” Cancer Research, vol. 58, no. 2, pp. 334–341, 1998. View at Scopus
  28. S. Ekmekcioglu, J. Ellerhorst, C. M. Smid et al., “Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival,” Clinical Cancer Research, vol. 6, no. 12, pp. 4768–4775, 2000. View at Scopus
  29. S. H. Aaltomaa, P. K. Lipponen, and V. M. Kosma, “Inducible nitric oxide synthase (iNOS) expression and its prognostic value in prostate cancer,” Anticancer Research, vol. 21, no. 4B, pp. 3101–3106, 2001. View at Scopus
  30. P. K. Lala and C. Chakraborty, “Role of nitric oxide in carcinogenesis and tumour progression,” The Lancet Oncology, vol. 2, no. 3, pp. 149–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Massi, A. Franchi, I. Sardi et al., “Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions,” The Journal of Pathology, vol. 194, no. 2, pp. 194–200, 2001.
  32. A. S. Bulut, E. Erden, S. D. Sak, H. Doruk, N. Kursun, and D. Dincol, “Significance of inducible nitric oxide synthase expression in benign and malignant breast epithelium: an immunohistochemical study of 151 cases,” Virchows Archiv, vol. 447, no. 1, pp. 24–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Singh and A. K. Gupta, “Nitric oxide: role in tumour biology and iNOS/NO-based anticancer therapies,” Cancer Chemotherapy and Pharmacology, vol. 67, no. 6, pp. 1211–1224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Ishikawa, K. Takenaga, M. Akimoto et al., “ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis,” Science, vol. 320, no. 5876, pp. 661–664, 2008. View at Publisher · View at Google Scholar · View at Scopus