About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 239838, 9 pages
http://dx.doi.org/10.1155/2013/239838
Research Article

Synthesis, Characterization, and Acute Oral Toxicity Evaluation of pH-Sensitive Hydrogel Based on MPEG, Poly(ε-caprolactone), and Itaconic Acid

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China

Received 21 August 2013; Revised 17 October 2013; Accepted 26 October 2013

Academic Editor: Mehrdad Hamidi

Copyright © 2013 Liwei Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A kind of chemically cross-linked pH-sensitive hydrogels based on methoxyl poly(ethylene glycol)-poly(caprolactone)-acryloyl chloride (MPEG-PCL-AC, PECA), poly(ethylene glycol) methyl ether methacrylate (MPEGMA, MEG), N,N-methylenebisacrylamide (BIS), and itaconic acid (IA) were prepared without using any organic solvent by heat-initiated free radical method. The obtained macromonomers and hydrogels were characterized by 1H NMR and FT-IR, respectively. Morphology study of hydrogels was also investigated in this paper, and it showed that the hydrogels had good pH-sensitivity. The acute toxicity test and histopathological study were conducted in BALB/c mice. The results indicated that the maximum tolerance dose of the hydrogel was higher than 10000 mg/kg body weight. No morality or signs of toxicity were observed during the whole 7-day observation period. Compared to the control groups, there were no important adverse effects in the variables of hematology routine test and serum chemistry analysis both in male or female treatment group. Histopathological study also did not show any significant lesions, including heart, liver, lung, spleen, kidney, stomach, intestine, and testis. All the results demonstrated that this hydrogel was nontoxic after gavage. Thus, the hydrogel might be the biocompatible potential candidate for oral drug delivery system.