About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 239838, 9 pages
http://dx.doi.org/10.1155/2013/239838
Research Article

Synthesis, Characterization, and Acute Oral Toxicity Evaluation of pH-Sensitive Hydrogel Based on MPEG, Poly(ε-caprolactone), and Itaconic Acid

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China

Received 21 August 2013; Revised 17 October 2013; Accepted 26 October 2013

Academic Editor: Mehrdad Hamidi

Copyright © 2013 Liwei Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. E. Bromberg and E. S. Ron, “Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery,” Advanced Drug Delivery Reviews, vol. 31, no. 3, pp. 197–221, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Zhang, L.-Y. Chu, Y.-K. Li, and Y. M. Lee, “Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors,” Polymer, vol. 48, no. 6, pp. 1718–1728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Qu, A. Wirsén, and A.-C. Albertsson, “Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water,” Polymer, vol. 41, no. 12, pp. 4589–4598, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Y. Yeh, P. Kopečková, and J. Kopeček, “Biodegradable and pH-sensitive hydrogels: synthesis by crosslinking of N, N-dimethylacrylamide copolymer precursors,” Journal of Polymer Science A, vol. 32, no. 9, pp. 1627–1637, 2003.
  5. T. Wang, M. Turhan, and S. Gunasekaran, “Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alcohol) hydrogel,” Polymer International, vol. 53, no. 7, pp. 911–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Zhang, Y. Luo, and Z. Li, “Synthesis and characterization of a pH- and ionic strength-responsive hydrogel,” Soft Materials, vol. 5, no. 4, pp. 183–195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. I. Lee and H. S. Yoo, “Biodegradable microspheres containing poly(ε-caprolactone)-Pluronic block copolymers for temperature-responsive release of proteins,” Colloids and Surfaces B, vol. 61, no. 1, pp. 81–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Mc Gann, C. L. Higginbotham, L. M. Geever, and M. J. D. Nugent, “The synthesis of novel pH-sensitive poly(vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications,” International Journal of Pharmaceutics, vol. 372, no. 1-2, pp. 154–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. He, J. Guan, and J. L. Lee, “An oral delivery device based on self-folding hydrogels,” Journal of Controlled Release, vol. 110, no. 2, pp. 339–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wei, C. Gong, M. Gou et al., “Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system,” International Journal of Pharmaceutics, vol. 381, no. 1, pp. 1–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Hamidi, A. Azadi, and P. Rafiei, “Hydrogel nanoparticles in drug delivery,” Advanced Drug Delivery Reviews, vol. 60, no. 15, pp. 1638–1649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Kim and N. A. Peppas, “In vitro release behavior and stability of insulin in complexation hydrogels as oral drug delivery carriers,” International Journal of Pharmaceutics, vol. 266, no. 1-2, pp. 29–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Qiu and K. Park, “Environment-sensitive hydrogels for drug delivery,” Advanced Drug Delivery Reviews, vol. 53, no. 3, pp. 321–339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. K. Nguyen, C. T. Huynh, and D. S. Lee, “pH-sensitive and bioadhesive poly(β-amino ester)-poly(ethylene glycol)-poly(β-amino ester) triblock copolymer hydrogels with potential for drug delivery in oral mucosal surfaces,” Polymer, vol. 50, no. 22, pp. 5205–5210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. N. M. Ranjha, J. Mudassir, and N. Akhtar, “Methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels for controlled drug delivery,” Journal of Sol-Gel Science and Technology, vol. 47, no. 1, pp. 23–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Gupta, K. Vermani, and S. Garg, “Hydrogels: from controlled release to pH-responsive drug delivery,” Drug Discovery Today, vol. 7, no. 10, pp. 569–579, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Wu, J. Liu, S. Cao et al., “Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2-(dimethylamino) ethyl methacrylate],” International Journal of Pharmaceutics, vol. 416, no. 1, pp. 104–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Velasco, C. B. Danoux, J. A. Redondo et al., “PH-sensitive polymer hydrogels derived from morpholine to prevent the crystallization of ibuprofen,” Journal of Controlled Release, vol. 149, no. 2, pp. 140–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Yu and M. V. Pishko, “Release of paclitaxel from pH sensitive and biodegradable dextran based hydrogels,” Soft Matter, vol. 7, no. 19, pp. 8898–8904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Zhang, L. Chen, M. Deng, Y. Bai, X. Chen, and X. Jing, “Biodegradable thermo- and pH-responsive hydrogels for oral drug delivery,” Journal of Polymer Science A, vol. 49, no. 13, pp. 2941–2951, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Gong, C. Li, S. Zhu, Y. Zhang, Y. Du, and J. Jiang, “A novel pH-sensitive hydrogel based on dual crosslinked alginate/N-α-glutaric acid chitosan for oral delivery of protein,” Carbohydrate Polymers, vol. 85, no. 4, pp. 869–874, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Freiberg and X. X. Zhu, “Polymer microspheres for controlled drug release,” International Journal of Pharmaceutics, vol. 282, no. 1-2, pp. 1–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Iemma, U. G. Spizzirri, F. Puoci et al., “pH-Sensitive hydrogels based on bovine serum albumin for oral drug delivery,” International Journal of Pharmaceutics, vol. 312, no. 1-2, pp. 151–157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J.-Y. Yoon, H.-Y. Park, J.-H. Kim, and W.-S. Kim, “Adsorption of BSA on highly carboxylated microspheres—quantitative effects of surface functional groups and interaction forces,” Journal of Colloid and Interface Science, vol. 177, no. 2, pp. 613–620, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Perret and A. Skoulios, “Synthese et caracterisation de copoly-mers sequences polyoxyethylene/poly(ε-caprolactone),” Die Makromolekulare Chemie, vol. 156, no. 1, pp. 143–156, 1972. View at Publisher · View at Google Scholar
  26. S. Y. Kim, Y. M. Lee, D. J. Baik, and J. S. Kang, “Toxic characteristics of methoxy poly(ethylene glycol)/poly(ε-caprolactone) nanospheres; In vitro and in vivo studies in the normal mice,” Biomaterials, vol. 24, no. 1, pp. 55–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Hu, L. Zhang, Y. Cao, H. Ge, X. Jiang, and C. Yang, “Degradation behavior of poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) micelles in aqueous solution,” Biomacromolecules, vol. 5, no. 5, pp. 1756–1762, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Wang, S. Z. Fu, Y. C. Gu et al., “Synthesis and characterization of biodegradable pH-sensitive hydrogels based on poly(ε-caprolactone), methacrylic acid, and poly(ethylene glycol),” Polymer Degradation and Stability, vol. 94, no. 4, pp. 730–737, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Song, Y. C. Gu, X. Xu et al., “Synthesis and characterization of pH-sensitive hydrogel based on methoxyl poly(ethylene glycol), poly(ε-caprolactone) and itaconic acid for delivery of doxorubicin,” Advanced Science Letters, vol. 16, no. 1, pp. 130–136, 2012.
  30. C. Shen, S. Guo, and C. Lu, “Degradation behaviors of monomethoxy poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles in aqueous solution,” Polymers for Advanced Technologies, vol. 19, no. 1, pp. 66–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Wang, B. Kan, Y. Wang et al., “Pharmaceutical nanotechnology: safety evaluation of amphiphilic three-armed star-shaped copolymer micelles,” Journal of Pharmaceutical Sciences, vol. 99, no. 6, pp. 2830–2838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Chen, Z. Qian, M. Gou et al., “Acute oral toxicity evaluation of biodegradable and pH-sensitive hydrogel based on polycaprolactone, poly(ethylene glycol) and methylacrylic acid (MAA),” Journal of Biomedical Materials Research A, vol. 84, no. 3, pp. 589–597, 2008. View at Publisher · View at Google Scholar · View at Scopus