About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 241763, 10 pages
http://dx.doi.org/10.1155/2013/241763
Research Article

MDR Gene Expression Analysis of Six Drug-Resistant Ovarian Cancer Cell Lines

1Department of Histology and Embryology, Poznań University of Medical Sciences, 61-781 Poznań, Poland
2Department of Histology and Embryology, Wrocław Medical University, 50-368 Wrocław, Poland

Received 18 September 2012; Accepted 21 November 2012

Academic Editor: Antonio La Gioia

Copyright © 2013 Radosław Januchowski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Kurman, Blaustein’s Pathology of the Female Genital Tract, Springer, New York, NY, USA, 5th edition, 2002.
  2. The ICON and AGO Collaborators, “Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial,” Lancet, vol. 361, pp. 2099–2106, 2003.
  3. J. Pfisterer, M. Plante, I. Vergote et al., “Gemcitabine plus carboplatin compared with carboplatin in patients with platinum-sensitive recurrent ovarian cancer: an intergroup trial of the AGO-OVAR, the NCIC CTG, and the EORTC GCG,” Journal of Clinical Oncology, vol. 24, no. 29, pp. 4699–4707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Pujade-Lauraine, S. Mahner, J. Kaern, M. Gebski, P. Heywood, and A. Vasey, “A randomized, phase III study of carboplatin and pegylated liposomal doxorubicin versus carboplatin and paclitaxel in relapsed platinum-sensitive ovarian cancer (OC): CALYPSO study of the Gynecologic Cancer Intergroup (GCIG),” Journal of Clinical Oncology, vol. 27, no. 18, abstract LBA5509, 2009.
  5. J. Sehouli, D. Stengel, G. Oskay-Oezcelik et al., “Nonplatinum topotecan combinations versus topotecan alone for recurrent ovarian cancer: results of a phase III study of the North-Eastern German Society of Gynecological Oncology Ovarian Cancer Study Group,” Journal of Clinical Oncology, vol. 26, no. 19, pp. 3176–3182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. G. Mutch, M. Orlando, T. Goss et al., “Randomized phase III trial of gemcitabine compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer,” Journal of Clinical Oncology, vol. 25, no. 19, pp. 2811–2818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Ferrandina, M. Ludovisi, D. Lorusso et al., “Phase III trial of gemcitabine compared with pegylated liposomal doxorubicin in progressive or recurrent ovarian cancer,” Journal of Clinical Oncology, vol. 26, no. 6, pp. 890–896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Stavrovskaya, “Cellular mechanism of multidrug resistance of tumor cells,” Biochemistry, vol. 65, no. 1, pp. 95–106, 2000. View at Scopus
  9. M. M. Gottesman, “Mechanisms of cancer drug resistance,” Annual Review of Medicine, vol. 53, pp. 615–627, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. G. D. Kruh, “Introduction to resistance to anticancer agents,” Oncogene, vol. 22, no. 47, pp. 7262–7264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Ozben, “Mechanisms and strategies to overcome multiple drug resistance in cancer,” FEBS Letters, vol. 580, no. 12, pp. 2903–2909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. D. Leonard, T. Fojo, and S. E. Bates, “The role of ABC transporters in clinical practice,” Oncologist, vol. 8, no. 5, pp. 411–424, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. C. H. Choi, “ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal,” Cancer Cell International, vol. 5, article 30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Abolhoda, A. E. Wilson, H. Ross, P. V. Danenberg, M. Burt, and K. W. Scotto, “Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin,” Clinical Cancer Research, vol. 5, no. 11, pp. 3352–3356, 1999. View at Scopus
  15. A. M. Al-Katib, M. R. Smith, W. S. Kamanda et al., “Bryostatin 1 down-regulates mdr1 and potentiates vincristine cytotoxicity in diffuse large cell lymphoma xenografts,” Clinical Cancer Research, vol. 4, no. 5, pp. 1305–1314, 1998. View at Scopus
  16. A. Podolski-Renić, T. Andelković, J. Banković, N. Tanić, S. Ruždijić, and M. Pešić, “The role of paclitaxel in the development and treatment of multidrug resistant cancer cell lines,” Biomedicine and Pharmacotherapy, vol. 65, no. 5, pp. 345–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. P. C. Cole, G. Bhardwaj, J. H. Gerlach et al., “Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line,” Science, vol. 258, no. 5088, pp. 1650–1654, 1992. View at Scopus
  18. O. Fardel, E. Jigorel, M. Le Vee, and L. Payen, “Physiological, pharmacological and clinical features of the multidrug resistance protein 2,” Biomedicine and Pharmacotherapy, vol. 59, no. 3, pp. 104–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Surowiak, V. Materna, I. Kaplenko et al., “ABCC2 (MRP2, cMOAT) can be localized in the nuclear membrane of ovarian carcinomas and correlates with resistance to cisplatin and clinical outcome,” Clinical Cancer Research, vol. 12, no. 23, pp. 7149–7158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. D. Guminski, R. L. Balleine, Y. E. Chiew et al., “MRP2 (ABCC2) and cisplatin sensitivity in hepatocytes and human ovarian carcinoma,” Gynecologic Oncology, vol. 100, no. 2, pp. 239–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Austin Doyle, W. Yang, L. V. Abruzzo et al., “A multidrug resistance transporter from human MCF-7 breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 26, pp. 15665–15670, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. R. W. Robey, O. Polgar, J. Deeken, K. W. To, and S. E. Bates, “ABCG2: determining its relevance in clinical drug resistance,” Cancer and Metastasis Reviews, vol. 26, no. 1, pp. 39–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Maliepaard, M. A. Van Gastelen, L. A. De Jong et al., “Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line,” Cancer Research, vol. 59, no. 18, pp. 4559–4563, 1999. View at Scopus
  24. G. L. Scheffer, A. B. Schroeijers, M. A. Izquierdo, E. A. C. Wiemer, and R. J. Scheper, “Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer,” Current Opinion in Oncology, vol. 12, no. 6, pp. 550–556, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. C. M. Laurencot, G. L. Scheffer, R. J. Scheper, and R. H. Shoemaker, “Increased LRP Mrna expression is associated with the MDR phenotype in intrinsically resistant human cancer cell lines,” International Journal of Cancer, vol. 72, pp. 1021–1026, 1997.
  26. W. Berger, L. Elbling, and M. Micksche, “Expression of the major vault protein LRP in human non-small-cell lung cancer cells: activation by short-team exposure to antineoplastic drugs,” International Journal of Cancer, vol. 88, pp. 293–300, 2000.
  27. B. C. Behrens, T. C. Hamilton, and H. Masuda, “Characterization of a cis-diamminedichloroplatinum(II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues,” Cancer Research, vol. 47, no. 2, pp. 414–418, 1987. View at Scopus
  28. E. Dolfini, T. Dasdia, G. Arancia et al., “Characterization of a clonal human colon adenocarcinoma line intrinsically resistant to doxorubicin,” British Journal of Cancer, vol. 76, no. 1, pp. 67–76, 1997. View at Scopus
  29. M. Dietel, U. Bals, B. Schaefer, I. Herzig, H. Arps, and M. Zabel, “In vitro prediction of cytostatic drug resistance in primary cell cultures of solid malignant tumours,” European Journal of Cancer Part A, vol. 29, no. 3, pp. 416–420, 1993. View at Scopus
  30. B. T. Hennessy, R. L. Coleman, and M. Markman, “Ovarian cancer,” Lancet, vol. 374, pp. 371–382, 2009.
  31. R. J. Raggers, I. Vogels, and G. Van Meer, “Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor,” Biochemical Journal, vol. 357, no. 3, pp. 859–865, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. Ho, A. V. Ng, S. Lam, and J. Y. Hung, “Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells,” Cancer Research, vol. 67, no. 10, pp. 4827–4833, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. H. G. P. Raaijmakers, E. P. L. M. De Grouw, B. A. Van Der Reijden, T. J. M. De Witte, J. H. Jansen, and R. A. P. Raymakers, “ABCB1 modulation does not circumvent drug extrusion from primitive leukemic progenitor cells and may preferentially target residual normal cells in acute myelogenous leukemia,” Clinical Cancer Research, vol. 12, no. 11 I, pp. 3452–3458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. M. Gottesman, T. Fojo, and S. E. Bates, “Multidrug resistance in cancer: role of ATP-dependent transporters,” Nature Reviews Cancer, vol. 2, no. 1, pp. 48–58, 2002. View at Scopus
  35. M. L. H. Vlaming, Z. Pala, A. Van Esch et al., “Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo,” Clinical Cancer Research, vol. 15, no. 9, pp. 3084–3093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. L. H. Vlaming, Z. Pala, A. Van Esch et al., “Impact of Abcc2 (Mrp2) and Abcc3 (Mrp3) on the in vivo elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate,” Clinical Cancer Research, vol. 14, no. 24, pp. 8152–8160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Liedert, V. Materna, D. Schadendorf, J. Thomale, and H. Lage, “Overexpression of cMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin,” Journal of Investigative Dermatology, vol. 121, no. 1, pp. 172–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Ishikawa and F. Ali-Osman, “Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance,” Journal of Biological Chemistry, vol. 268, no. 27, pp. 20116–20125, 1993. View at Scopus
  39. H. Kase, S. Kodama, E. Nagai, and K. Tanaka, “Glutathione S-transferase π immunostaining of cisplatin-resistant ovarian cancer cells in ascites,” Acta Cytologica, vol. 42, no. 6, pp. 1397–1402, 1998. View at Scopus
  40. K. Kasahara, Y. Fujiwara, K. Nishio et al., “Metallothionein content correlates with the sensitivity of human small cell lung cancer cell lines to cisplatin,” Cancer Research, vol. 51, no. 12, pp. 3237–3242, 1991. View at Scopus
  41. C. H. Yang, E. Schneider, M. L. Kuo, E. L. Volk, E. Rocchi, and Y. C. Chen, “BCRP/MXR/ABCP expression in topotecan-resistant human breast carcinoma cells,” Biochemical Pharmacology, vol. 60, no. 6, pp. 831–837, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Ishii, M. Iwahana, I. Mitsui et al., “Growth inhibitory effect of a new camptothecin analog, DX-8951f, on various drug-resistant sublines including BCRP-mediated camptothecin derivative-resistant variants derived from the human lung cancer cell line PC-6,” Anti-Cancer Drugs, vol. 11, no. 5, pp. 353–362, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. U. Vanhoefer, M. R. Müller, R. A. Hilger et al., “Reversal of MDR1-associated resistance to topotecan by PAK-200S, a new dihydropyridine analogue, in human cancer cell lines,” British Journal of Cancer, vol. 81, no. 8, pp. 1304–1310, 1999. View at Scopus
  44. M. Leggas, M. Adachi, G. L. Scheffer et al., “Mrp4 confers resistance to topotecan and protects the brain from chemotherapy,” Molecular and Cellular Biology, vol. 24, no. 17, pp. 7612–7621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. D. Norris, D. de Graaf, M. Haber, M. Kavallaris, J. Madafiglio, and J. Gilbert, “Involvement of MDR1 P-glycoprotein in multifactorial resistance to methotrexate,” International Journal of Cancer, vol. 65, pp. 613–619, 1996.
  46. A. J. Gifford, M. Kavallaris, J. Madafiglio, L. H. Matherly, B. W. Stewart, and M. Haber, “P-glycoprotein-mediated methotrexate resistance in CCRF-CEM sublines deficient in methotrexate accumulation due to a point mutation in the reduced folate carrier gene,” International Journal of Cancer, vol. 78, pp. 176–181, 1998.
  47. D. De Graaf, R. C. Sharma, E. B. Mechetner, R. T. Schimke, and I. B. Roninson, “P-glycoprotein confers methotrexate resistance in 3T6 cells with deficient carrier-mediated methotrexate uptake,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 3, pp. 1238–1242, 1996. View at Publisher · View at Google Scholar · View at Scopus