About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 243649, 10 pages
http://dx.doi.org/10.1155/2013/243649
Research Article

HTR8/SVneo Cells Display Trophoblast Progenitor Cell-Like Characteristics Indicative of Self-Renewal, Repopulation Activity, and Expression of “Stemness-” Associated Transcription Factors

1Placenta-Lab, Department of Obstetrics, University Hospital Jena, Germany
2Abteilung für Geburtshilfe, Placenta-Labor, Universitätsklinikum Jena, Bachstr. 18, 07740 Jena, Germany

Received 27 October 2012; Revised 10 January 2013; Accepted 16 January 2013

Academic Editor: Irma Virant-Klun

Copyright © 2013 Maja Weber et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Lobo, Y. Shimono, D. Qian, and M. F. Clarke, “The biology of cancer stem cells,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 675–699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. N. Y. Cheung, H. J. Zhang, W. C. Xue, and M. K. Y. Siu, “Pathogenesis of choriocarcinoma: clinical, genetic and stem cell perspectives,” Future Oncology, vol. 5, no. 2, pp. 217–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. M. Roberts and S. J. Fisher, “Trophoblast stem cells,” Biology of Reproduction, vol. 84, no. 3, pp. 412–421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Keramari, J. Razavi, K. A. Ingman et al., “Sox2 is essential for formation of trophectoderm in the preimplantation embryo,” PLoS One, vol. 5, no. 11, Article ID e13952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Meissner and R. Jaenisch, “Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts,” Nature, vol. 439, no. 7073, pp. 212–215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kyurkchiev, F. Gandolfi, S. Hayrabedyan et al., “Stem cells in the reproductive system,” American Journal of Reproductive Immunology, vol. 67, pp. 445–462, 2012. View at Publisher · View at Google Scholar
  7. G. E. Lash, T. Ansari, P. Bischof et al., “IFPA meeting 2008 workshops report,” Placenta, vol. 30, pp. S4–S14, 2009. View at Publisher · View at Google Scholar
  8. J. S. Fitzgerald, T. G. Poehlmann, E. Schleussner, and U. R. Markert, “Trophoblast invasion: The role of intracellular cytokine signalling via signal transducer and activator of transcription 3 (STAT3),” Human Reproduction Update, vol. 14, no. 4, pp. 335–344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C. H. Graham, T. S. Hawley, R. G. Hawley et al., “Establishment and characterization of first trimester human trophoblast cells with extended lifespan,” Experimental Cell Research, vol. 206, no. 2, pp. 204–211, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. P. O. Kohler and W. E. Bridson, “Isolation of hormone-producing clonal lines of human choriocarcinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 32, no. 5, pp. 683–687, 1971. View at Scopus
  11. D. M. Morales-Prieto, W. Chaiwangyen, S. Ospina-Prieto et al., “MicroRNA expression profiles of trophoblastic cells,” Placenta, vol. 33, pp. 725–734, 2012. View at Publisher · View at Google Scholar
  12. T. Takao, K. Asanoma, K. Kato et al., “Isolation and characterization of human trophoblast side-population (SP) cells in primary villous Cytotrophoblasts and HTR-8/SVneo cell line,” PLoS One, vol. 6, no. 7, Article ID e21990, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Spitalieri, G. Cortese, A. Pietropolli et al., “Identification of multipotent cytotrophoblast cells from human first trimester chorionic Villi,” Cloning and Stem Cells, vol. 11, no. 4, pp. 535–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Fabian, M. Barok, G. Vereb, and J. Szöllosi, “Die hard: are cancer stem cells the bruce willises of tumor biology?” Cytometry A, vol. 75, no. 1, pp. 67–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. B. M. Boman and M. S. Wicha, “Cancer stem cells: a step toward the cure,” Journal of Clinical Oncology, vol. 26, no. 17, pp. 2795–2799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Pei, “Regulation of pluripotency and reprogramming by transcription factors,” Journal of Biological Chemistry, vol. 284, no. 6, pp. 3365–3369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. T. K. Pang, C. O. Leung, T. M. Ye et al., “MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells,” Carcinogenesis, vol. 31, no. 6, pp. 1037–1044, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. V. L. Bautch, “Cancer: tumour stem cells switch sides,” Nature, vol. 468, no. 7325, pp. 770–771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Prasad, M. Czepiel, C. Cetinkaya et al., “Continuous hypoxic culturing maintains activation of Notch and allows long-term propagation of human embryonic stem cells without spontaneous differentiation,” Cell Proliferation, vol. 42, no. 1, pp. 63–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. B. B. Hafeez, V. M. Adhami, M. Asim et al., “Targeted knockdown of notchl inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator,” Clinical Cancer Research, vol. 15, no. 2, pp. 452–459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Kurosawa, “Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells,” Journal of Bioscience and Bioengineering, vol. 103, no. 5, pp. 389–398, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Honig, L. Rieger, M. Kapp, J. Dietl, and U. Kämmerer, “Immunohistochemistry in human placental tissue—pitfalls of antigen detection,” Journal of Histochemistry and Cytochemistry, vol. 53, no. 11, pp. 1413–1420, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Chawiengsaksophak, R. James, V. E. Hammond, F. Köntgen, and F. Beck, “Homeosis and intestinal tumours in Cdx2 mutant mice,” Nature, vol. 386, no. 6620, pp. 84–87, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. T. M. Erb, C. Schneider, S. E. Mucko et al., “Paracrine and epigenetic control of trophectoderm differentiation from human embryonic stem cells: the role of bone morphogenic protein 4 and histone deacetylases,” Stem Cells and Development, vol. 20, pp. 1601–1614, 2011. View at Publisher · View at Google Scholar
  25. E. Wydooghe, L. Vandaele, J. Beek et al., “Differential apoptotic staining of mammalian blastocysts based on double immunofluorescent CDX2 and active caspase-3 staining,” Analytical Biochemistry, vol. 416, pp. 228–230, 2011. View at Publisher · View at Google Scholar
  26. P. C. Hermann, S. L. Huber, T. Herrler et al., “Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer,” Cell Stem Cell, vol. 1, no. 3, pp. 313–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Pannuti, K. Foreman, P. Rizzo et al., “Targeting Notch to target cancer stem cells,” Clinical Cancer Research, vol. 16, no. 12, pp. 3141–3152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Wang, S. Banerjee, Y. Li, K. M. W. Rahman, Y. Zhang, and F. H. Sarkar, “Down-regulation of Notch-1 inhibits invasion by inactivation of nuclear factor-κB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells,” Cancer Research, vol. 66, no. 5, pp. 2778–2784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Liao, C. C. Zhang, B. Zhou et al., “Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity,” Cancer Research, vol. 67, no. 17, pp. 8131–8138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. James, P. R. Stone, and L. W. Chamley, “Cytotrophoblast differentiation in the first trimester of pregnancy: evidence for separate progenitors of extravillous trophoblasts and syncytiotrophoblast,” Reproduction, vol. 130, no. 1, pp. 95–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Bilban, S. Tauber, P. Haslinger et al., “Trophoblast invasion: assessment of cellular models using gene expression signatures,” Placenta, vol. 31, no. 11, pp. 989–996, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. I. T. Manyonda, G. S. J. Whitley, and J. E. Cartwright, “Trophoblast cell lines: a response to the workshop report by King et al,” Placenta, vol. 22, no. 2-3, pp. 262–263, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. D. W. Morrish, G. S. J. Whitley, J. E. Cartwright, C. H. Graham, and I. Caniggia, “In vitro models to study trophoblast function and dysfunction—a workshop report,” Placenta, vol. 23, no. 1, pp. S114–S118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. J. N. Bulmer, G. J. Burton, S. Collins et al., “IFPA Meeting 2011 workshop report II: angiogenic signaling and regulation of fetal endothelial function, placental and fetal circulation and growth, spiral artery remodeling,” Placenta, vol. 33, pp. S9–S14, 2012.
  35. L. A. Cole, “hCG, the wonder of today's science,” Reproductive Biology and Endocrinology, vol. 10, article 24, 2012. View at Publisher · View at Google Scholar
  36. M. Hemberger, R. Udayashankar, P. Tesar, H. Moore, and G. J. Burton, “ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta,” Human Molecular Genetics, vol. 19, no. 12, pp. 2456–2467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Nishiyama, L. Xin, A. A. Sharov et al., “Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors,” Cell Stem Cell, vol. 5, no. 4, pp. 420–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Chen, A. Yabuuchi, S. Eminli et al., “Cross-regulation of the nanog and Cdx2 promoters,” Cell Research, vol. 19, no. 9, pp. 1052–1061, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. O. Genbacev, M. Donne, M. Kapidzic et al., “Establishment of human trophoblast progenitor cell lines from the chorion,” Stem Cells, vol. 29, pp. 1427–1436, 2011.
  40. M. K. Y. Siu, E. S. Y. Wong, H. Y. Chan, H. Y. S. Ngan, K. Y. K. Chan, and A. N. Y. Cheung, “Overexpression of NANOG in gestational trophoblastic diseases: effect on apoptosis, cell invasion, and clinical outcome,” American Journal of Pathology, vol. 173, no. 4, pp. 1165–1172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. W. X. Zhao and J. H. Lin, “Notch signaling pathway and human placenta,” International Journal of Medical Sciences, vol. 9, pp. 447–452, 2012. View at Publisher · View at Google Scholar
  42. T. Poehlmann, S. Bashar, U. R. Markert et al., “Letter to the editors,” Placenta, vol. 25, no. 4, pp. 357–358, 2004. View at Publisher · View at Google Scholar · View at Scopus