About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 254954, 13 pages
http://dx.doi.org/10.1155/2013/254954
Review Article

Genetics of Alzheimer’s Disease

1401 WIDB, Department of Biology, Brigham Young University, Provo, UT 84602, USA
2500 W. Chipeta Way, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA

Received 16 April 2013; Revised 8 July 2013; Accepted 8 July 2013

Academic Editor: Mikko Hiltunen

Copyright © 2013 Perry G. Ridge et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. W. Querfurth and F. M. LaFerla, “Alzheimer's disease,” The New England Journal of Medicine, vol. 362, no. 4, pp. 329–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Brookmeyer, E. Johnson, K. Ziegler-Graham, and H. M. Arrighi, “Forecasting the global burden of Alzheimer's disease,” Alzheimer's and Dementia, vol. 3, no. 3, pp. 186–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Ballard, S. Gauthier, A. Corbett, C. Brayne, D. Aarsland, and E. Jones, “Alzheimer's disease,” The Lancet, vol. 377, no. 9770, pp. 1019–1031, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Dubois, H. H. Feldman, C. Jacova et al., “Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria,” Lancet Neurology, vol. 6, no. 8, pp. 734–746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Hardy and G. A. Higgins, “Alzheimer's disease: the amyloid cascade hypothesis,” Science, vol. 256, no. 5054, pp. 184–185, 1992. View at Scopus
  6. J. Kim, L. Onstead, S. Randle et al., “Aβ40 inhibits amyloid deposition in vivo,” The Journal of Neuroscience, vol. 27, no. 3, pp. 627–633, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. A. Armstrong, “The pathogenesis of alzheimer's disease: a reevaluation of the ‘amyloid cascade hypothesis’,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 630865, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. L. Newell, B. T. Hyman, J. H. Growdon, and E. T. Hedley-Whyte, “Application of the National Institute on Aging (NIA)-Reagan Institute criteria for the neuropathological diagnosis of Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 58, no. 11, pp. 1147–1155, 1999. View at Scopus
  9. M. Ankarcrona, F. Mangialasche, and B. Winblad, “Rethinking Alzheimer's disease therapy: are mitochondria the key?” Journal of Alzheimer's Disease, vol. 20, supplement 2, pp. S579–S590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. H. Swerdlow and S. M. Khan, “A “mitochondrial cascade hypothesis” for sporadic Alzheimer's disease,” Medical Hypotheses, vol. 63, no. 1, pp. 8–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Mancuso, D. Orsucci, G. Siciliano, and L. Murri, “Mitochondria, mitochondrial DNA and Alzheimer's disease. What comes first?” Current Alzheimer Research, vol. 5, no. 5, pp. 457–468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Onyango, S. Khan, B. Miller, R. Swerdlow, P. Trimmer, and J. Bennett Jr., “Mitochondrial genomic contribution to mitochondrial dysfunction in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 9, no. 2, pp. 183–193, 2006. View at Scopus
  13. R. H. Swerdlow, J. M. Burns, and S. M. Khan, “The Alzheimer's disease mitochondrial cascade hypothesis,” Journal of Alzheimer's Disease, vol. 20, supplement 2, pp. S265–S279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Devi, B. M. Prabhu, D. F. Galati, N. G. Avadhani, and H. K. Anandatheerthavarada, “Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction,” The Journal of Neuroscience, vol. 26, no. 35, pp. 9057–9068, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. K. Anandatheerthavarada and L. Devi, “Amyloid precursor protein and mitochondrial dysfunction in Alzheimer's disease,” Neuroscientist, vol. 13, no. 6, pp. 626–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. D. C. Chan, “Mitochondria: dynamic organelles in disease, aging, and development,” Cell, vol. 125, no. 7, pp. 1241–1252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. R. H. Swerdlow and S. M. Khan, “The Alzheimer's disease mitochondrial cascade hypothesis: an update,” Experimental Neurology, vol. 218, no. 2, pp. 308–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Herrup, “Reimagining Alzheimer's disease—an age-based hypothesis,” The Journal of Neuroscience, vol. 30, no. 50, pp. 16755–16762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Patterson, J. W. Feightner, A. Garcia, G.-Y. R. Hsiung, C. MacKnight, and A. D. Sadovnick, “Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease,” Canadian Medical Association Journal, vol. 178, no. 5, pp. 548–556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. K. Cataldo, J. J. Prochaska, and S. A. Glantz, “Cigarette smoking is a risk factor for Alzheimer's disease: an analysis controlling for tobacco industry affiliation,” Journal of Alzheimer's Disease, vol. 19, no. 2, pp. 465–480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. O. P. Almeida, G. K. Hulse, D. Lawrence, and L. Flicker, “Smoking as a risk factor for Alzheimer's disease: contrasting evidence from a systematic review of case-control and cohort studies,” Addiction, vol. 97, no. 1, pp. 15–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Lindsay, D. Laurin, R. Verreault et al., “Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging,” American Journal of Epidemiology, vol. 156, no. 5, pp. 445–453, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. L. J. Podewils, E. Guallar, L. H. Kuller et al., “Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study,” American Journal of Epidemiology, vol. 161, no. 7, pp. 639–651, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. H.-X. Wang, A. Karp, B. Winblad, and L. Fratiglioni, “Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen Project,” American Journal of Epidemiology, vol. 155, no. 12, pp. 1081–1087, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Scarmeas, Y. Stern, R. Mayeux, and J. A. Luchsinger, “Mediterranean diet, alzheimer disease, and vascular mediation,” Archives of Neurology, vol. 63, no. 12, pp. 1709–1717, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Patterson, J. Feightner, A. Garcia, and C. MacKnight, “General risk factors for dementia: a systematic evidence review,” Alzheimer's and Dementia, vol. 3, no. 4, pp. 341–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Blennow, M. J. de Leon, and H. Zetterberg, “Alzheimer's disease,” The Lancet, vol. 368, no. 9533, pp. 387–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Goate, M.-C. Chartier-Harlin, M. Mullan et al., “Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease,” Nature, vol. 349, no. 6311, pp. 704–706, 1991. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Sherrington, E. I. Rogaev, Y. Liang et al., “Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease,” Nature, vol. 375, no. 6534, pp. 754–760, 1995. View at Scopus
  30. E. Levy-Lahad, W. Wasco, P. Poorkaj et al., “Candidate gene for the chromosome 1 familial Alzheimer's disease locus,” Science, vol. 269, no. 5226, pp. 973–977, 1995. View at Scopus
  31. C. Priller, T. Bauer, G. Mitteregger, B. Krebs, H. A. Kretzschmar, and J. Herms, “Synapse formation and function is modulated by the amyloid precursor protein,” The Journal of Neuroscience, vol. 26, no. 27, pp. 7212–7221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. T. L. Young-Pearse, J. Bai, R. Chang, J. B. Zheng, J. J. Loturco, and D. J. Selkoe, “A critical function for β-amyloid precursor protein in neuronal migration revealed by in utero RNA interference,” The Journal of Neuroscience, vol. 27, no. 52, pp. 14459–14469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Thinakaran and E. H. Koo, “Amyloid precursor protein trafficking, processing, and function,” The Journal of Biological Chemistry, vol. 283, no. 44, pp. 29615–29619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Cruts and C. Van Broeckhoven, “Molecular genetics of Alzheimer's disease,” Annals of Medicine, vol. 30, no. 6, pp. 560–565, 1998. View at Scopus
  35. L. N. Geller and H. Potter, “Chromosome missegregation and trisomy 21 mosaicism in Alzheimer's disease,” Neurobiology of Disease, vol. 6, no. 3, pp. 167–179, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Sleegers, N. Brouwers, I. Gijselinck et al., “APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy,” Brain, vol. 129, no. 11, pp. 2977–2983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. B. V. Hooli, G. Mohapatra, M. Mattheisen, et al., “Role of common and rare APP DNA sequence variants in Alzheimer disease,” Neurology, vol. 78, pp. 1250–1257, 2012.
  38. J. C. Janssen, J. A. Beck, T. A. Campbell et al., “Early onset familial Alzheimer's disease: mutation frequency in 31 families,” Neurology, vol. 60, no. 2, pp. 235–239, 2003. View at Scopus
  39. G. Raux, L. Guyant-Maréchal, C. Martin et al., “Molecular diagnosis of autosomal dominant early onset Alzheimer's disease: an update,” Journal of Medical Genetics, vol. 42, no. 10, pp. 793–795, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Rogaeva, “The solved and unsolved mysteries of the genetics of early-onset Alzheimer's disease,” NeuroMolecular Medicine, vol. 2, no. 1, pp. 1–10, 2002. View at Scopus
  41. M. Citron, T. Oltersdorf, C. Haass et al., “Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production,” Nature, vol. 360, no. 6405, pp. 672–674, 1992. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Citron, C. Vigo-Pelfrey, D. B. Teplow et al., “Excessive production of amyloid β-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 25, pp. 11993–11997, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Haass, A. Y. Hung, D. J. Selkoe, and D. B. Teplow, “Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid β-protein precursor,” The Journal of Biological Chemistry, vol. 269, no. 26, pp. 17741–17748, 1994. View at Scopus
  44. C. Nilsberth, A. Westlind-Danielsson, C. B. Eckman et al., “The “Arctic” APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation,” Nature Neuroscience, vol. 4, no. 9, pp. 887–893, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Haass, C. A. Lemere, A. Capell et al., “The Swedish mutation causes early-onset Alzheimer's disease by β-secretase cleavage within the secretory pathway,” Nature Medicine, vol. 1, no. 12, pp. 1291–1296, 1995. View at Scopus
  46. J. V. Dorpe, L. Smeijers, I. Dewachter et al., “Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons,” American Journal of Pathology, vol. 157, no. 4, pp. 1283–1298, 2000. View at Scopus
  47. C. Sahlin, A. Lord, K. Magnusson et al., “The Arctic Alzheimer mutation favors intracellular amyloid-β production by making amyloid precursor protein less available to α-secretase,” Journal of Neurochemistry, vol. 101, no. 3, pp. 854–862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Moechars, I. Dewachter, K. Lorent et al., “Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain,” The Journal of Biological Chemistry, vol. 274, no. 10, pp. 6483–6492, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Cruts, C. M. van Duijn, H. Backhovens et al., “Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease,” Human Molecular Genetics, vol. 7, no. 1, pp. 43–51, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Campion, J.-M. Flaman, A. Brice et al., “Mutations of the presenilin I gene in families with early-onset Alzheimer's disease,” Human Molecular Genetics, vol. 4, no. 12, pp. 2373–2377, 1995. View at Scopus
  51. M. Hutton, F. Busfield, M. Wragg et al., “Complete analysis of the presenilin 1 gene in early onset Alzheimer's disease,” NeuroReport, vol. 7, no. 3, pp. 801–805, 1996. View at Scopus
  52. M. Cruts and C. Van Broeckhoven, “Presenilin mutations in Alzheimer's disease,” Human Mutation, vol. 11, pp. 183–190, 1998.
  53. S. Jayadev, J. B. Leverenz, E. Steinbart et al., “Alzheimer's disease phenotypes and genotypes associated with mutations in presenilin 2,” Brain, vol. 133, no. 4, pp. 1143–1154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Moehlmann, E. Winkler, X. Xia et al., “Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Aβ42 production,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8025–8030, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. L. A. Rudzinski, R. M. Fletcher, D. W. Dickson et al., “Early onset familial alzheimer disease with spastic paraparesis, dysarthria, and seizures and N135S mutation in PSEN1,” Alzheimer Disease and Associated Disorders, vol. 22, no. 3, pp. 299–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. Heckmann, W.-C. Low, C. de Villiers et al., “Novel presenilin 1 mutation with profound neurofibrillary pathology in an indigenous Southern African family with early-onset Alzheimer's disease,” Brain, vol. 127, no. 1, pp. 133–142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Steiner, E. Winkler, D. Edbauer et al., “PEN-2 is an integral component of the γ-secretase complex required for coordinated expression of presenilin and nicastrin,” The Journal of Biological Chemistry, vol. 277, no. 42, pp. 39062–39065, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Citron, D. Westaway, W. Xia et al., “Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice,” Nature Medicine, vol. 3, no. 1, pp. 67–72, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. G. D. Schellenberg, T. D. Bird, E. M. Wijsman et al., “Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14,” Science, vol. 258, no. 5082, pp. 668–671, 1992. View at Scopus
  60. N. S. Ryan and M. N. Rossor, “Correlating familial Alzheimers disease gene mutations with clinical phenotype,” Biomarkers in Medicine, vol. 4, no. 1, pp. 99–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Sherrington, S. Froelich, S. Sorbi et al., “Alzheimer's disease associated with mutations in presenilin 2 is rare and variably penetrant,” Human Molecular Genetics, vol. 5, no. 7, pp. 985–988, 1996. View at Publisher · View at Google Scholar · View at Scopus
  62. D. M. Kovacs, H. J. Fausett, K. J. Page et al., “Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells,” Nature Medicine, vol. 2, no. 2, pp. 224–229, 1996. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Bertram, M. B. McQueen, K. Mullin, D. Blacker, and R. E. Tanzi, “Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database,” Nature Genetics, vol. 39, no. 1, pp. 17–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. R. W. Mahley, “Apolipoprotein E: cholesterol transport protein with expanding role in cell biology,” Science, vol. 240, no. 4852, pp. 622–630, 1988. View at Scopus
  65. D. T. A. Eisenberg, C. W. Kuzawa, and M. G. Hayes, “Worldwide allele frequencies of the human apolipoprotein E gene: climate, local adaptations, and evolutionary history,” American Journal of Physical Anthropology, vol. 143, no. 1, pp. 100–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. E. H. Corder, A. M. Saunders, W. J. Strittmatter et al., “Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families,” Science, vol. 261, no. 5123, pp. 921–923, 1993. View at Scopus
  67. H. C. Hendrie, K. S. Hall, S. Hui et al., “Apolipoprotein E genotypes and Alzheimer's disease in a community study of elderly African Americans,” Annals of Neurology, vol. 37, no. 1, pp. 118–120, 1995. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Maestre, R. Ottman, Y. Stern et al., “Apolipoprotein E and Alzheimer's disease: ethnic variation in genotypic risks,” Annals of Neurology, vol. 37, no. 2, pp. 254–259, 1995. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Noguchi, K. Murakami, N. Yamada et al., “Apolipoprotein E genotype and Alzheimer's disease,” The Lancet, vol. 342, no. 8873, pp. 737–738, 1993. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Ueki, M. Kawano, Y. Namba, M. Kawakami, and K. Ikeda, “A high frequency of apolipoprotein E4 isoprotein in Japanese patients with late-onset nonfamilial Alzheimer's disease,” Neuroscience Letters, vol. 163, no. 2, pp. 166–168, 1993. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Harold, R. Abraham, P. Hollingworth, et al., “Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease,” Nature Genetics, vol. 41, pp. 1088–1093, 2009.
  72. E. H. Corder, A. M. Saunders, N. J. Risch et al., “Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease,” Nature Genetics, vol. 7, no. 2, pp. 180–184, 1994. View at Publisher · View at Google Scholar · View at Scopus
  73. E. M. Reiman, K. Chen, X. Liu et al., “Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6820–6825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. K. R. Bales, J. C. Dodart, R. B. DeMattos, D. M. Holtzman, and S. M. Paul, “Apolipoprotein E, amyloid, and Alzheimer disease,” Molecular Interventions, vol. 2, no. 6, pp. 363–375, 2002. View at Scopus
  75. M. Koistinaho, S. Lin, X. Wu et al., “Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides,” Nature Medicine, vol. 10, no. 7, pp. 719–726, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. Q. Jiang, C. Y. D. Lee, S. Mandrekar et al., “ApoE promotes the proteolytic degradation of Aβ,” Neuron, vol. 58, no. 5, pp. 681–693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Biffi, C. D. Anderson, R. S. Desikan et al., “Genetic variation and neuroimaging measures in Alzheimer disease,” Archives of Neurology, vol. 67, no. 6, pp. 677–685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. M. M. Carrasquillo, O. Belbin, T. A. Hunter et al., “Replication of CLU, CR1, and PICALM associations with Alzheimer disease,” Archives of Neurology, vol. 67, no. 8, pp. 961–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. J. J. Corneveaux, A. J. Myers, A. N. Allen et al., “Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals,” Human Molecular Genetics, vol. 19, no. 16, Article ID ddq221, pp. 3295–3301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. V. Giedraitis, L. Kilander, M. Degerman-Gunnarsson et al., “Genetic analysis of Alzheimer's disease in the Uppsala Longitudinal Study of Adult Men,” Dementia and Geriatric Cognitive Disorders, vol. 27, no. 1, pp. 59–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. R. J. Guerreiro, J. Beck, J. R. Gibbs et al., “Genetic variability in CLU and its association with Alzheimer's disease,” PLoS ONE, vol. 5, no. 3, Article ID e9510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. X. Hu, E. Pickering, Y. C. Liu et al., “Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer's disease,” PLoS ONE, vol. 6, no. 2, Article ID e16616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Jun, A. C. Naj, G. W. Beecham, et al., “Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes,” Archives of Neurology, vol. 67, pp. 1473–1484, 2010.
  84. M. I. Kamboh, R. L. Minster, F. Y. Demirci et al., “Association of CLU and PICALM variants with Alzheimer's disease,” Neurobiology of Aging, vol. 33, no. 3, pp. 518–521, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. J.-C. Lambert, S. Heath, G. Even et al., “Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease,” Nature Genetics, vol. 41, no. 10, pp. 1094–1099, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. A. C. Naj, G. Jun, G. W. Beecham, et al., “Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease,” Nature Genetics, vol. 43, pp. 436–441, 2011.
  87. S. Seshadri, A. L. Fitzpatrick, and M. A. Ikram, “Genome-wide analysis of genetic loci associated with Alzheimer disease,” Journal of the American Medical Association, vol. 303, no. 18, pp. 1832–1840, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. B. Tycko, L. Feng, L. Nguyen, et al., “Polymorphisms in the human apolipoprotein-J/clusterin gene: ethnic variation and distribution in Alzheimer's disease,” Human Genetics, vol. 98, pp. 430–436, 1996.
  89. J.-T. Yu, L. Li, Q.-X. Zhu et al., “Implication of CLU gene polymorphisms in Chinese patients with Alzheimer's disease,” Clinica Chimica Acta, vol. 411, no. 19-20, pp. 1516–1519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. E. M. Wijsman, N. D. Pankratz, Y. Choi et al., “Genome-wide association of familial late-onset alzheimer's disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE,” PLoS Genetics, vol. 7, no. 2, Article ID e1001308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. L. S. Elias-Sonnenschein, S. Helisalmi, T. Natunen, et al., “Genetic loci associated with Alzheimer's disease and cerebrospinal fluid biomarkers in a Finnish case-control cohort,” PLoS One, vol. 8, Article ID e59676, 2013.
  92. R. B. DeMattos, M. A. O'dell, M. Parsadanian et al., “Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10843–10848, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. R. B. DeMattos, J. R. Cirrito, M. Parsadanian et al., “ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo,” Neuron, vol. 41, no. 2, pp. 193–202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. R. D. Bell, A. P. Sagare, A. E. Friedman et al., “Transport pathways for clearance of human Alzheimer's amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 5, pp. 909–918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. E. M. C. Schrijvers, P. J. Koudstaal, A. Hofman, and M. M. B. Breteler, “Plasma clusterin and the risk of Alzheimer disease,” Journal of the American Medical Association, vol. 305, no. 13, pp. 1322–1326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Thambisetty, Y. An, A. Kinsey et al., “Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment,” NeuroImage, vol. 59, no. 1, pp. 212–217, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Thambisetty, A. Simmons, L. Velayudhan et al., “Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease,” Archives of General Psychiatry, vol. 67, no. 7, pp. 739–748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. M. J. Ladu, J. A. Shah, C. A. Reardon et al., “Apolipoprotein E receptors mediate the effects of β-amyloid on astrocyte cultures,” The Journal of Biological Chemistry, vol. 275, no. 43, pp. 33974–33980, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. I. P. Trougakos and E. S. Gonos, “Regulation of clusterin/apolipoprotein J, a functional homologue to the small heat shock proteins, by oxidative stress in ageing and age-related diseases,” Free Radical Research, vol. 40, no. 12, pp. 1324–1334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. B. V. Zlokovic, C. L. Martel, E. Matsubara et al., “Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid β at the blood-brain and blood-cerebrospinal fluid barriers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 9, pp. 4229–4234, 1996. View at Scopus
  101. E. Matsubara, C. Soto, S. Governale, B. Frangione, and J. Ghiso, “Apolipoprotein J and Alzheimer's amyloid β solubility,” Biochemical Journal, vol. 316, no. 2, pp. 671–679, 1996. View at Scopus
  102. P. Hollingworth, D. Harold, R. Sims et al., “Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease,” Nature Genetics, vol. 43, no. 5, pp. 429–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. N. Tanaka, S. Abe-Dohmae, N. Iwamoto, M. L. Fitzgerald, and S. Yokoyama, “Helical apolipoproteins of high-density lipoprotein enhance phagocytosis by stabilizing ATP-binding cassette transporter A7,” Journal of Lipid Research, vol. 51, no. 9, pp. 2591–2599, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Hayashi, S. Abe-Dohmae, M. Okazaki, K. Ueda, and S. Yokoyama, “Heterogeneity of high density lipoprotein generated by ABCA1 and ABCA7,” Journal of Lipid Research, vol. 46, no. 8, pp. 1703–1711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. N. Tanaka, S. Abe-Dohmae, N. Iwamoto, and S. Yokoyama, “Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense system,” Journal of Atherosclerosis and Thrombosis, vol. 18, no. 4, pp. 274–281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. W. E. Kaminski, E. Orsó, W. Diederich, J. Klucken, W. Drobnik, and G. Schmitz, “Identification of a novel human sterol-sensitive ATP-binding cassette transporter (ABCA7),” Biochemical and Biophysical Research Communications, vol. 273, no. 2, pp. 532–538, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. K. R. Bales, “Brain lipid metabolism, apolipoprotein E and the pathophysiology of Alzheimer's disease,” Neuropharmacology, vol. 59, no. 4-5, pp. 295–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. G. Di Paolo and T.-W. Kim, “Linking lipids to Alzheimer's disease: cholesterol and beyond,” Nature Reviews Neuroscience, vol. 12, no. 5, pp. 284–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. T. Matsuzaki, K. Sasaki, J. Hata et al., “Association of Alzheimer disease pathology with abnormal lipid metabolism: the hisayama study,” Neurology, vol. 77, no. 11, pp. 1068–1075, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. F. Wu and P. J. Yao, “Clathrin-mediated endocytosis and Alzheimer's disease: an update,” Ageing Research Reviews, vol. 8, no. 3, pp. 147–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. J. H. Lee, R. Cheng, S. Barral et al., “Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals,” Archives of Neurology, vol. 68, no. 3, pp. 320–328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. M. A. Cousin and P. J. Robinson, “The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis,” Trends in Neurosciences, vol. 24, no. 11, pp. 659–665, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. F. Simpson, N. K. Hussain, B. Qualmann et al., “SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation,” Nature Cell Biology, vol. 1, no. 2, pp. 119–124, 1999. View at Scopus
  114. E. M. Reiman, J. A. Webster, A. J. Myers et al., “GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers,” Neuron, vol. 54, no. 5, pp. 713–720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Harel, M. P. Mattson, and P. J. Yao, “CALM, a clathrin assembly protein, influences cell surface GluR2 abundance,” NeuroMolecular Medicine, vol. 13, no. 1, pp. 88–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Harel, F. Wu, M. P. Mattson, C. M. Morris, and P. J. Yao, “Evidence for CALM in directing VAMP2 trafficking,” Traffic, vol. 9, no. 3, pp. 417–429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. M. H. Dreyling, J. A. Martinez-Climent, M. Zheng, J. Mao, J. D. Rowley, and S. K. Bohlander, “The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 10, pp. 4804–4809, 1996. View at Publisher · View at Google Scholar · View at Scopus
  118. Q. Zhang, J.-T. Yu, Q.-X. Zhu et al., “Complement receptor 1 polymorphisms and risk of late-onset Alzheimer's disease,” Brain Research, vol. 1348, pp. 216–221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Rogers, R. Li, D. Mastroeni et al., “Peripheral clearance of amyloid β peptide by complement C3-dependent adherence to erythrocytes,” Neurobiology of Aging, vol. 27, no. 12, pp. 1733–1739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. T. V. Arumugam, T. Magnus, T. M. Woodruff, L. M. Proctor, I. A. Shiels, and S. M. Taylor, “Complement mediators in ischemia-reperfusion injury,” Clinica Chimica Acta, vol. 374, no. 1-2, pp. 33–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Yaddanapudi, M. M. Altintas, A. D. Kistler, et al., “CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival,” The Journal of Clinical Investigation, vol. 121, pp. 3965–3980, 2011.
  122. Y. Ma, H. Yang, J. Qi et al., “CD2AP is indispensable to multistep cytotoxic process by NK cells,” Molecular Immunology, vol. 47, no. 5, pp. 1074–1082, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Kobayashi, A. Sawano, Y. Nojima, M. Shibuya, and Y. Maru, “The c-Cbl/CD2AP complex regulates VEGF-induced endocytosis and degradation of Flt-1 (VEGFR-1),” The FASEB Journal, vol. 18, no. 7, pp. 929–931, 2004. View at Scopus
  124. K. Ishibashi, M. Suzuki, S. Sasaki, and M. Imai, “Identification of a new multigene four-transmembrane family (MS4A) related to CD20, HTm4 and β subunit of the high-affinity IgE receptor,” Gene, vol. 264, no. 1, pp. 87–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  125. Y. Liang, T. R. Buckley, L. Tu, S. D. Langdon, and T. F. Tedder, “Structural organization of the human MS4A gene cluster on Chromosome 11q12,” Immunogenetics, vol. 53, no. 5, pp. 357–368, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. L. Bertram, C. Lange, K. Mullin et al., “Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE,” American Journal of Human Genetics, vol. 83, no. 5, pp. 623–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. K. Bettens, N. Brouwers, H. Van Miegroet et al., “Follow-up study of susceptibility loci for Alzheimer's disease and onset age identified by genome-wide association,” Journal of Alzheimer's Disease, vol. 19, no. 4, pp. 1169–1175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. E. C. M. Brinkman-Van der Linden, T. Angata, S. A. Reynolds, L. D. Powell, S. M. Hedrick, and A. Varki, “CD33/Siglec-3 binding specificity, expression pattern, and consequences of gene deletion in mice,” Molecular and Cellular Biology, vol. 23, no. 12, pp. 4199–4206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. T. Jonsson, J. K. Atwal, S. Steinberg, et al., “A mutation in APP protects against Alzheimer's disease and age-related cognitive decline,” Nature, vol. 488, pp. 96–99, 2012.
  130. R. Guerreiro, A. Wojtas, J. Bras, et al., “TREM2 variants in Alzheimer's disease,” The New England Journal of Medicine, vol. 368, pp. 117–127, 2013.
  131. T. Jonsson, H. Stefansson, S. Steinberg, et al., “Variant of TREM2 associated with the risk of Alzheimer's disease,” The New England Journal of Medicine, vol. 368, pp. 107–116, 2013.
  132. S. Takasaki, “Mitochondrial haplogroups associated with Japanese Alzheimer's patients,” Journal of Bioenergetics and Biomembranes, vol. 41, no. 5, pp. 407–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. A. Maruszak, J. A. Canter, M. Styczyńska, C. Zekanowski, and M. Barcikowska, “Mitochondrial haplogroup H and Alzheimer's disease-is there a connection?” Neurobiology of Aging, vol. 30, no. 11, pp. 1749–1755, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. F. Fesahat, M. Houshmand, M. S. S. Panahi, K. Gharagozli, and F. Mirzajani, “Do haplogroups H and U act to increase the penetrance of Alzheimer's disease?” Cellular and Molecular Neurobiology, vol. 27, no. 3, pp. 329–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. A. Santoro, V. Balbi, E. Balducci et al., “Evidence for sub-haplogroup H5 of mitochondrial DNA as a risk factor for late onset alzheimer's disease,” PLoS ONE, vol. 5, no. 8, Article ID e12037, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. P. Ridge, T. Maxwell, C. Corcoran, et al., “Mitochondrial genomic analysis of late onset Alzheimer's disease reveals protective haplogroups H6A1A/H6A1B: the Cache County Study on Memory in Aging,” PLoS One, vol. 7, Article ID e45134, 2012.
  137. G. Carrieri, M. Bonafè, M. De Luca et al., “Mitochondrial DNA haplogroups and APOE4 allele are non-independent variables in sporadic Alzheimer's disease,” Human Genetics, vol. 108, no. 3, pp. 194–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  138. J. M. van der Walt, Y. A. Dementieva, E. R. Martin et al., “Analysis of European mitochondrial haplogroups with Alzheimer disease risk,” Neuroscience Letters, vol. 365, no. 1, pp. 28–32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Lakatos, O. Derbeneva, D. Younes et al., “Association between mitochondrial DNA variations and Alzheimer's disease in the ADNI cohort,” Neurobiology of Aging, vol. 31, no. 8, pp. 1355–1363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. G. Zsurka, J. Kálmán, A. Juhász et al., “No mitochondrial haplotype was found to increase risk for Alzheimer's disease,” Biological Psychiatry, vol. 44, no. 5, pp. 371–373, 1998. View at Publisher · View at Google Scholar · View at Scopus
  141. P. F. Chinnery, G. A. Taylor, N. Howell et al., “Mitochondrial DNA haplogroups and susceptibility to AD and dementia with Lewy bodies,” Neurology, vol. 55, no. 2, pp. 302–304, 2000. View at Scopus
  142. A. Pyle, T. Foltynie, W. Tiangyou et al., “Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD,” Annals of Neurology, vol. 57, no. 4, pp. 564–567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Mancuso, M. Nardini, D. Micheli et al., “Lack of association between mtDNA haplogroups and Alzheimer's disease in Tuscany,” Neurological Sciences, vol. 28, no. 3, pp. 142–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. J. Krüger, R. Hinttala, K. Majamaa, and A. M. Remes, “Mitochondrial DNA haplogroups in early-onset Alzheimer's disease and frontotemporal lobar degeneration,” Molecular Neurodegeneration, vol. 5, article 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. G. Hudson, R. Sims, D. Harold, et al., “No consistent evidence for association between mtDNA variants and Alzheimer disease,” Neurology, vol. 78, no. 14, pp. 1038–1042, 2012.
  146. J. M. Schott and ADNI Investigators, “Using CSF biomarkers to replicate genetic associations in Alzheimer's disease,” Neurobiology of Aging, vol. 33, no. 7, pp. 1486.e9–1486.e15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. D. Peterson, C. Munger, J. Crowley, et al., “Variants in PPP3R1 and MAPT are associated with more rapid functional decline in Alzheimer's disease: The Cache County Dementia Progression Study,” Alzheimer's & Dementia, 2013. View at Publisher · View at Google Scholar
  148. C. Cruchaga, J. S. Kauwe, O. Harari, et al., “GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease,” Neuron, vol. 78, pp. 256–268, 2013.
  149. C. Cruchaga, J. S. K. Kauwe, K. Mayo et al., “SNPs associated with cerebrospinal fluid Phospho-tau levels influence rate of decline in alzheimer's disease,” PLoS Genetics, vol. 6, no. 9, Article ID e1001101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. P. Alexopoulos, L.-H. Guo, M. Kratzer, C. Westerteicher, A. Kurz, and R. Perneczky, “Impact of SORL1 single nucleotide polymorphisms on Alzheimer's disease cerebrospinal fluid markers Alzheimer's Disease Neuroimaging Initiative,” Dementia and Geriatric Cognitive Disorders, vol. 32, no. 3, pp. 164–170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. J. S. K. Kauwe, C. Cruchaga, C. M. Karch et al., “Fine mapping of genetic variants in BIN1, CLU, CR1 and PICALM for association with cerebrospinal fluid biomarkers for Alzheimer's disease,” PLoS ONE, vol. 6, no. 2, Article ID e15918, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. B.-M. M. Schjeide, C. Schnack, J.-C. Lambert et al., “The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels,” Archives of General Psychiatry, vol. 68, no. 2, pp. 207–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. S. H. Lee, D. Harold, D. R. Nyholt, et al., “Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis,” Human Molecular Genetics, vol. 22, pp. 832–841, 2013.
  154. J. H. Moore, “The ubiquitous nature of epistasis in determining susceptibility to common human diseases,” Human Heredity, vol. 56, no. 1–3, pp. 73–82, 2003. View at Publisher · View at Google Scholar · View at Scopus
  155. J. H. Moore and S. M. Williams, “Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis,” BioEssays, vol. 27, no. 6, pp. 637–646, 2005. View at Publisher · View at Google Scholar · View at Scopus
  156. J. H. Moore and S. M. Williams, “Epistasis and its implications for personal genetics,” American Journal of Human Genetics, vol. 85, no. 3, pp. 309–320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. H. J. Cordell, “Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans,” Human Molecular Genetics, vol. 11, no. 20, pp. 2463–2468, 2002. View at Scopus
  158. R. Culverhouse, B. K. Suarez, J. Lin, and T. Reich, “A perspective on epistasis: limits of models displaying no main effect,” American Journal of Human Genetics, vol. 70, no. 2, pp. 461–471, 2002. View at Publisher · View at Google Scholar · View at Scopus
  159. Ö. Carlborg and C. S. Haley, “Epistasis: too often neglected in complex trait studies?” Nature Reviews Genetics, vol. 5, no. 8, pp. 618–625, 2004. View at Publisher · View at Google Scholar · View at Scopus
  160. T. A. Thornton-Wells, J. H. Moore, and J. L. Haines, “Genetics, statistics and human disease: analytical retooling for complexity,” Trends in Genetics, vol. 20, no. 12, pp. 640–647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  161. P. C. Phillips, “Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems,” Nature Reviews Genetics, vol. 9, no. 11, pp. 855–867, 2008. View at Publisher · View at Google Scholar · View at Scopus
  162. M. D. Ritchie, L. W. Hahn, N. Roodi et al., “Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer,” American Journal of Human Genetics, vol. 69, no. 1, pp. 138–147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  163. A. S. Andrew, H. H. Nelson, K. T. Kelsey et al., “Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility,” Carcinogenesis, vol. 27, no. 5, pp. 1030–1037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  164. L. Briollais, Y. Wang, I. Rajendram et al., “Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario,” BMC Medicine, vol. 5, article 22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  165. M. Chen, A. M. Kamat, M. Huang et al., “High-order interactions among genetic polymorphisms in nucleotide excision repair pathway genes and smoking in modulating bladder cancer risk,” Carcinogenesis, vol. 28, no. 10, pp. 2160–2165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. C.-T. Tsai, J.-J. Hwang, M. D. Ritchie et al., “Renin-angiotensin system gene polymorphisms and coronary artery disease in a large angiographic cohort: detection of high order gene-gene interaction,” Atherosclerosis, vol. 195, no. 1, pp. 172–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. I. H. S. Chan, T. F. Leung, N. L. S. Tang et al., “Gene-gene interactions for asthma and plasma total IgE concentration in Chinese children,” Journal of Allergy and Clinical Immunology, vol. 117, no. 1, pp. 127–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. J.-Y. Lee, J.-C. Kwon, and J.-J. Kim, “Multifactor dimensionality reduction (MDR) analysis to detect single nucleotide polymorphisms associated with a carcass trait in a Hanwoo population,” Asian-Australasian Journal of Animal Sciences, vol. 21, no. 6, pp. 784–788, 2008. View at Scopus
  169. M. D. Ritchie, D. W. Haas, A. A. Motsinger et al., “Drug transporter and metabolizing enzyme gene variants and nonnucleoside reverse-transcriptase inhibitor hepatotoxicity,” Clinical Infectious Diseases, vol. 43, no. 6, pp. 779–782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  170. H.-W. Park, E.-S. Shin, J.-E. Lee et al., “Multilocus analysis of atopy in Korean children using multifactor- dimensionality reduction,” Thorax, vol. 62, no. 3, pp. 265–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  171. M. Manuguerra, G. Matullo, F. Veglia et al., “Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions,” Carcinogenesis, vol. 28, no. 2, pp. 414–422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. A. Julià, J. Moore, L. Miquel et al., “Identification of a two-loci epistatic interaction associated with susceptibility to rheumatoid arthritis through reverse engineering and multifactor dimensionality reduction,” Genomics, vol. 90, no. 1, pp. 6–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. T. L. Edwards, K. Lewis, D. R. Velez, S. Dudek, and M. D. Ritchie, “Exploring the performance of multifactor dimensionality reduction in large scale SNP studies and in the presence of genetic heterogeneity among epistatic disease models,” Human Heredity, vol. 67, no. 3, pp. 183–192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. Y. M. Cho, M. D. Ritchie, J. H. Moore et al., “Multifactor-dimensionality reduction shows a two-locus interaction associated with type 2 diabetes mellitus,” Diabetologia, vol. 47, no. 3, pp. 549–554, 2004. View at Publisher · View at Google Scholar · View at Scopus
  175. K. J. H. Robson, D. J. Lehmann, V. L. C. Wimhurst et al., “Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (HFE) as risk factors for developing Alzheimer's disease,” Journal of Medical Genetics, vol. 41, no. 4, pp. 261–265, 2004. View at Scopus
  176. A. Muendlein, C. H. Saely, T. Marte et al., “Synergistic effects of the apolipoprotein E ε3/ε2/ε4, the cholesteryl ester transfer protein TaqIB, and the apolipoprotein C3 -482 C > T polymorphisms on their association with coronary artery disease,” Atherosclerosis, vol. 199, no. 1, pp. 179–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. L. Polito, P. G. Kehoe, A. Davin, et al., “The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease in two Caucasian case-control cohorts,” Alzheimer's & Dementia, vol. 9, no. 4, pp. 392–399, 2013.
  178. M. Hiltunen, A. Mannermaa, S. Helisalmi et al., “Butyrylcholinesterase K variant and apolipoprotein E4 genes do not act in synergy in Finnish late-onset Alzheimer's disease patients,” Neuroscience Letters, vol. 250, no. 1, pp. 69–71, 1998. View at Publisher · View at Google Scholar · View at Scopus
  179. F. Licastro, M. Chiappelli, L. M. E. Grimaldi et al., “A new promoter polymorphism in the alpha-1-antichymotrypsin gene is a disease modifier of Alzheimer's disease,” Neurobiology of Aging, vol. 26, no. 4, pp. 449–453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  180. C. Talbot, H. Houlden, N. Craddock et al., “Polymorphism in AACT gene may lower age of onset of Alzheimer's disease,” NeuroReport, vol. 7, no. 2, pp. 534–536, 1996. View at Scopus
  181. O. Combarros, M. García-Román, A. Fontalba et al., “Interaction of the H63D mutation in the hemochromatosis gene with the apolipoprotein E epsilon 4 allele modulates age at onset of Alzheimer's disease,” Dementia and Geriatric Cognitive Disorders, vol. 15, no. 3, pp. 151–154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  182. K. Kamino, K. Nagasaka, M. Imagawa et al., “Deficiency in mitochondrial aldehyde dehydrogenase increases the risk for late-onset Alzheimer's disease in the Japanese population,” Biochemical and Biophysical Research Communications, vol. 273, no. 1, pp. 192–196, 2000. View at Publisher · View at Google Scholar · View at Scopus
  183. J.-M. Kim, R. Stewart, I.-S. Shin, J.-S. Jung, and J.-S. Yoon, “Assessment of association between mitochondrial aldehyde dehydrogenase polymorphism and Alzheimer's disease in an older Korean population,” Neurobiology of Aging, vol. 25, no. 3, pp. 295–301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  184. O. Combarros, C. M. van Duijn, N. Hammond et al., “Replication by the Epistasis Project of the interaction between the genes for IL-6 and IL-10 in the risk of Alzheimer's disease,” Journal of Neuroinflammation, vol. 6, article 22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. J. M. Bullock, C. Medway, M. Cortina-Borja, et al., “Discovery by the Epistasis project of an epistatic interaction between the GSTM3 gene and the HHEX/IDE/KIF11 locus in the risk of Alzheimer's disease,” Neurobiology of Aging, vol. 34, no. 4, pp. 1309.e1–1309.e7, 2013.
  186. E. Rodríguez-Rodríguez, I. Mateo, J. Infante et al., “Interaction between HMGCR and ABCA1 cholesterol-related genes modulates Alzheimer's disease risk,” Brain Research, vol. 1280, pp. 166–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  187. J. S. K. Kauwe, S. Bertelsen, K. Mayo et al., “Suggestive synergy between genetic variants in TF and HFE as risk factors for Alzheimer's disease,” American Journal of Medical Genetics B, vol. 153, no. 4, pp. 955–959, 2010. View at Publisher · View at Google Scholar · View at Scopus
  188. O. Combarros, M. Cortina-Borja, A. D. Smith, and D. J. Lehmann, “Epistasis in sporadic Alzheimer's disease,” Neurobiology of Aging, vol. 30, no. 9, pp. 1333–1349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. M. Cortina-Borja, A. D. Smith, O. Combarros, and D. J. Lehmann, “The synergy factor: a statistic to measure interactions in complex diseases,” BMC Research Notes, vol. 2, article 105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  190. M. D. Ritchie, L. W. Hahn, and J. H. Moore, “Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity,” Genetic Epidemiology, vol. 24, no. 2, pp. 150–157, 2003. View at Publisher · View at Google Scholar · View at Scopus
  191. L. W. Hahn, M. D. Ritchie, and J. H. Moore, “Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions,” Bioinformatics, vol. 19, no. 3, pp. 376–382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  192. C. S. Coffey, P. R. Hebert, M. D. Ritchie et al., “An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene-gene interactions on risk of myocardial infarction: the importance of model validation,” BMC Bioinformatics, vol. 5, article 49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  193. J. Infante, C. Sanz, J. L. Fernández-Luna, J. Llorca, J. Berciano, and O. Combarros, “Gene-gene interaction between interleukin-6 and interleukin-10 reduces AD risk,” Neurology, vol. 63, no. 6, pp. 1135–1136, 2004. View at Scopus
  194. K. J. H. Robson, D. J. Lehmann, V. L. C. Wimhurst et al., “Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (HFE) as risk factors for developing Alzheimer's disease,” Journal of Medical Genetics, vol. 41, no. 4, pp. 261–265, 2004. View at Scopus