About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 256043, 15 pages
http://dx.doi.org/10.1155/2013/256043
Review Article

Glucose Toxic Effects on Granulation Tissue Productive Cells: The Diabetics’ Impaired Healing

1Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Playa, CP 10600 Havana, Cuba
2Institute for Wound Research, University of Florida, Gainesville, FL, USA
3Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, CP 10600 Havana, Cuba
4General Direction, Center for Genetic Engineering and Biotechnology, Playa, CP 10600 Havana, Cuba

Received 18 August 2012; Accepted 24 November 2012

Academic Editor: David G. Armstrong

Copyright © 2013 Jorge Berlanga-Acosta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Daneman, “Type 1 diabetes,” Lancet, vol. 367, no. 9513, pp. 847–858, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. L. Lamers, M. E. S. Almeida, M. Vicente-Manzanares, A. F. Horwitz, and M. F. Santos, “High glucose-mediated oxidative stress impairs cell migration,” PLoS ONE, vol. 6, no. 8, Article ID e22865, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Bouché, S. Serdy, C. R. Kahn, and A. B. Goldfine, “The cellular fate of glucose and its relevance in type 2 diabetes,” Endocrine Reviews, vol. 25, no. 5, pp. 807–830, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. G. Armstrong, K. Cohen, S. Courric, et al., “Diabetic foot ulcers and vascular insufficiency: our population has changed, but our methods have not,” Journal of Diabetes Science and Technology, vol. 5, no. 6, pp. 1591–1595, 2011.
  5. T. Davies Pryce, “A case of perforating ulcers of both feet associated with diabetes and ataxic symptoms,” The Lancet, vol. 130, no. 3331, pp. 11–12, 1887. View at Scopus
  6. P. D. Nguyen, J. P. Tutela, V. D. Thanik et al., “Improved diabetic wound healing through topical silencing of p53 is associated with augmented vasculogenic mediators,” Wound Repair and Regeneration, vol. 18, no. 6, pp. 553–559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Berlanga-Acosta, C. Valdéz-Pérez, W. Savigne-Gutiérrez, et al., “Cellular and molecular insights into the wound healing mechanism in diabetes,” Biotecnologia Aplicada, vol. 27, pp. 255–261, 2010.
  8. A. J. Boulton, L. Vileikyte, G. Ragnarson-Tennvall, and J. Apelqvist, “The global burden of diabetic foot disease,” Lancet, vol. 366, no. 9498, pp. 1719–1724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Gloire, S. Legrand-Poels, and J. Piette, “NF-κB activation by reactive oxygen species: fifteen years later,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1493–1505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Mitra and E. Abraham, “Participation of superoxide in neutrophil activation and cytokine production,” Biochimica et Biophysica Acta, vol. 1762, no. 8, pp. 732–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Guarino, A. Tosoni, and M. Nebuloni, “Direct contribution of epithelium to organ fibrosis: epithelial-mesenchymal transition,” Human Pathology, vol. 40, no. 10, pp. 1365–1376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Y. Yevdokimova, “High glucose-induced alterations of extracellular matrix of human skin fibroblasts are not dependent on TSP-1-TGFβ1 pathway,” Journal of Diabetes and its Complications, vol. 17, no. 6, pp. 355–364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. W. Rowe, B. J. Starman, W. Y. Fujimoto, and R. H. Williams, “Abnormalities in proliferation and protein synthesis in skin fibroblast cultures from patients with diabetes mellitus,” Diabetes, vol. 26, no. 4, pp. 284–290, 1977. View at Scopus
  14. K. Hehenberger and A. Hansson, “High glucose-induced growth factor resistance in human fibroblasts can be reversed by antioxidants and protein kinase C-inhibitors,” Cell Biochemistry and Function, vol. 15, no. 3, pp. 197–201, 1997. View at Scopus
  15. S. Goldstein, E. J. Moerman, and J. S. Soeldner, “Diabetes mellitus and genetic prediabetes. Decreased replicative capacity of cultured skin fibroblasts,” Journal of Clinical Investigation, vol. 63, no. 3, pp. 358–370, 1979. View at Scopus
  16. S. Goldstein, “Cellular and molecular biological studies on diabetes mellitus,” Pathologie Biologie, vol. 32, no. 2, pp. 99–106, 1984. View at Scopus
  17. K. Hehenberger, J. D. Heilborn, K. Brismar, and A. Hansson, “Inhibited proliferation of fibroblasts derived from chronic diabetic wounds and normal dermal fibroblasts treated with high glucose is associated with increased formation of L-lactate,” Wound Repair and Regeneration, vol. 6, no. 2, pp. 135–141, 1998. View at Scopus
  18. M. A. M. Loots, E. N. Lamme, J. R. Mekkes, J. D. Bos, and E. Middelkoop, “Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation,” Archives of Dermatological Research, vol. 291, no. 2-3, pp. 93–99, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. A. T. Grazul-Bilska, G. Luthra, L. P. Reynolds et al., “Effects of basic fibroblast growth factor (FGF-2) on proliferation of human skin fibroblasts in type II diabetes mellitus,” Experimental and Clinical Endocrinology and Diabetes, vol. 110, no. 4, pp. 176–181, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. M. Loots, S. B. Kenter, F. L. Au et al., “Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls,” European Journal of Cell Biology, vol. 81, no. 3, pp. 153–160, 2002. View at Scopus
  21. S. N. Xue, J. Lei, C. Yang, et al., “The biological behaviors of rat dermal fibroblasts can be inhibited by high levels of MMP9,” Experimental Diabetes Research, vol. 2012, Article ID 494579, 7 pages, 2012. View at Publisher · View at Google Scholar
  22. P. Velander, C. Theopold, T. Hirsch et al., “Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia,” Wound Repair and Regeneration, vol. 16, no. 2, pp. 288–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. T. Loughlin and C. M. Artlett, “3-Deoxyglucosone-collagen alters human dermal fibroblast migration and adhesion: implications for impaired wound healing in patients with diabetes,” Wound Repair and Regeneration, vol. 17, no. 5, pp. 739–749, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. T. Loughlin and C. M. Artlett, “Modification of collagen by 3-deoxyglucosone alters wound healing through differential regulation of p38 MAP kinase,” PLoS ONE, vol. 6, no. 5, Article ID e18676, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. D. T. Loughlin and C. M. Artlett, “Precursor of advanced glycation end products mediates ER-stress-induced caspase-3 activation of human dermal fibroblasts through NAD(P)H oxidase 4,” PloS ONE, vol. 5, no. 6, Article ID e11093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Alikhani, C. M. MacLellan, M. Raptis, S. Vora, P. C. Trackman, and D. T. Graves, “Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor,” American Journal of Physiology, vol. 292, no. 2, pp. C850–C856, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Tong, J. Ying, D. R. Pimentel, M. Trucillo, T. Adachi, and R. A. Cohen, “High glucose oxidizes SERCA cysteine-674 and prevents inhibition by nitric oxide of smooth muscle cell migration,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 2, pp. 361–369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. O. Z. Lerman, R. D. Galiano, M. Armour, J. P. Levine, and G. C. Gurtner, “Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia,” American Journal of Pathology, vol. 162, no. 1, pp. 303–312, 2003. View at Scopus
  29. S. J. Wall, M. J. Sampson, N. Levell, and G. Murphy, “Elevated matrix metalloproteinase-2 and -3 production from human diabetic dermal fibroblasts,” British Journal of Dermatology, vol. 149, no. 1, pp. 13–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. W. Burrow, J. A. Koch, H. H. Chuang, W. Zhong, D. D. Dean, and V. L. Sylvia, “Nitric oxide donors selectively reduce the expression of matrix metalloproteinases-8 and -9 by human diabetic skin fibroblasts,” Journal of Surgical Research, vol. 140, no. 1, pp. 90–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. W. I. Sivitz and M. A. Yorek, “Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 12, no. 4, pp. 537–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Giacco and M. Brownlee, “Oxidative stress and diabetic complications,” Circulation Research, vol. 107, no. 9, pp. 1058–1070, 2010.
  33. B. Ponugoti, G. Dong, D. T. Graves, et al., “Role of forkhead transcription factors in diabetes-induced oxidative stress,” Experimental Diabetes Research, vol. 2012, Article ID 939751, 7 pages, 2012. View at Publisher · View at Google Scholar
  34. P. Storz, “Forkhead homeobox type O transcription factors in the responses to oxidative stress,” Antioxidants and Redox Signaling, vol. 14, no. 4, pp. 593–605, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. F. Siqueira, J. Li, L. Chehab et al., “Impaired wound healing in mouse models of diabetes is mediated by TNF-α dysregulation and associated with enhanced activation of forkhead box O1 (FOXO1),” Diabetologia, vol. 53, no. 2, pp. 378–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. E. Obrenovich and V. M. Monnier, “Apoptotic killing of fibroblasts by matrix-bound advanced glycation endproducts,” Science of Aging Knowledge Environment, vol. 2005, no. 4, p. e3, 2005. View at Scopus
  37. M. H. Lima, A. M. Caricilli, L. L. de Abreu, et al., “Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: a double-blind placebo-controlled clinical trial,” PLoS ONE, vol. 7, no. 5, Article ID e36974, 2012.
  38. P. Dandona, A. Chaudhuri, H. Ghanim, and P. Mohanty, “Insulin as an Anti-Inflammatory and Antiatherogenic Modulator,” Journal of the American College of Cardiology, vol. 53, no. 5, pp. S14–S20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Pirola, A. Balcerczyk, J. Okabe, and A. El-Osta, “Epigenetic phenomena linked to diabetic complications,” Nature Reviews Endocrinology, vol. 6, no. 12, pp. 665–675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Sonta, T. Inoguchi, H. Tsubouchi et al., “Evidence for contribution of vascular NAD(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity,” Free Radical Biology and Medicine, vol. 37, no. 1, pp. 115–123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Waltenberger, J. Lange, and A. Kranz, “Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: a potential predictor for the individual capacity to develop collaterals,” Circulation, vol. 102, no. 2, pp. 185–190, 2000. View at Scopus
  42. D. T. Efron, D. Most, and A. Barbul, “Role of nitric oxide in wound healing,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 3, no. 3, pp. 197–204, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. S. E. Epstein, R. Kornowski, S. Fuchs, and H. F. Dvorak, “Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects,” Circulation, vol. 104, no. 1, pp. 115–119, 2001. View at Scopus
  44. S. E. Epstein, S. Fuchs, Y. F. Zhou, R. Baffour, and R. Kornowski, “Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards,” Cardiovascular Research, vol. 49, no. 3, pp. 532–542, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. T. A. Khan, F. W. Sellke, and R. J. Laham, “Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia,” Gene Therapy, vol. 10, no. 4, pp. 285–291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Duncan, V. Ezzat, and M. Kearney, “Insulin and endothelial function: physiological environment defines effect on atherosclerotic risk,” Current Diabetes Reviews, vol. 2, no. 1, pp. 51–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. U. Hink, H. Li, H. Mollnau, et al., “Mechanisms underlying endothelial dysfunction in diabetes mellitus,” Circulation Research, vol. 88, no. 2, pp. E14–E22, 2001.
  48. M. Jain, F. W. Logerfo, P. Guthrie, and L. Pradhan, “Effect of hyperglycemia and neuropeptides on interleukin-8 expression and angiogenesis in dermal microvascular endothelial cells,” Journal of Vascular Surgery, vol. 53, no. 6, pp. 1654–1660, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. J. V. Busik, S. Mohr, and M. B. Grant, “Hyperglycemia-Induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators,” Diabetes, vol. 57, no. 7, pp. 1952–1965, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. N. K. Rai, Suryabhan, M. Ansari, M. Kumar, V. K. Shukla, and K. Tripathi, “Effect of glycaemic control on apoptosis in diabetic wounds,” Journal of Wound Care, vol. 14, no. 6, pp. 277–281, 2005. View at Scopus
  51. S. I. Kageyama, H. Yokoo, K. Tomita et al., “High glucose-induced apoptosis in human coronary artery endothelial cells involves up-regulation of death receptors,” Cardiovascular Diabetology, vol. 10, p. 73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Su, G. M. Coudriet, H. K. Dae et al., “FoxO1 links insulin resistance to proinflammatory cytokine IL-1β production in macrophages,” Diabetes, vol. 58, no. 11, pp. 2624–2633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Simons, “Angiogenesis, arteriogenesis, and diabetes: paradigm reassessed?” Journal of the American College of Cardiology, vol. 46, no. 5, pp. 835–837, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Tanii, Y. Yonemitsu, T. Fujii et al., “Diabetic microangiopathy in ischemic limb is a disease of disturbance of the platelet-derived growth factor-BB/protein kinase C axis but not of impaired expression of angiogenic factors,” Circulation Research, vol. 98, no. 1, pp. 55–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Tamarat, J. S. Silvestre, M. Huijberts et al., “Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8555–8560, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. P. U. Magnusson, C. Looman, A. Åhgren, Y. Wu, L. Claesson-Welsh, and R. L. Heuchel, “Platelet-derived growth factor receptor-β constitutive activity promotes angiogenesis in vivo and in vitro,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 10, pp. 2142–2149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. S. M. Davidson and M. R. Duchen, “Endothelial mitochondria: contributing to vascular function and disease,” Circulation Research, vol. 100, no. 8, pp. 1128–1141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Fosslien, “Mitochondrial medicine—molecular pathology of defective oxidative phosphorylation,” Annals of Clinical and Laboratory Science, vol. 31, no. 1, pp. 25–67, 2001. View at Scopus
  59. A. Martin, M. R. Komada, and D. C. Sane, “Abnormal angiogenesis in diabetes mellitus,” Medicinal Research Reviews, vol. 23, no. 2, pp. 117–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Altavilla, A. Saitta, D. Cucinotta et al., “Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse,” Diabetes, vol. 50, no. 3, pp. 667–674, 2001. View at Scopus
  61. J. P. Cooke and D. W. Losordo, “Nitric oxide and angiogenesis,” Circulation, vol. 105, no. 18, pp. 2133–2135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. C. H. Leo, J. L. Hart, and O. L. Woodman, “Impairment of both nitric oxide-mediated and EDHF-type relaxation in small mesenteric arteries from rats with streptozotocin-induced diabetes,” British Journal of Pharmacology, vol. 162, no. 2, pp. 365–377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Kämpfer, J. Pfeilschifter, and S. Frank, “Expression and activity of arginase isoenzymes during normal and diabetes-impaired skin repair,” Journal of Investigative Dermatology, vol. 121, no. 6, pp. 1544–1551, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. C. L. M. Cooke and S. T. Davidge, “Peroxynitrite increases iNOS through NF-κB and decreases prostacyclin synthase in endothelial cells,” American Journal of Physiology, vol. 282, no. 2, pp. C395–C402, 2002. View at Scopus
  65. Y. Higashi, K. Noma, M. Yoshizumi, and Y. Kihara, “Endothelial function and oxidative stress in cardiovascular diseases,” Circulation Journal, vol. 73, no. 3, pp. 411–418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Tamarat, J. S. Silvestre, S. Le Ricousse-Roussanne et al., “Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment,” American Journal of Pathology, vol. 164, no. 2, pp. 457–466, 2004. View at Scopus
  67. H. Saito, Y. Yamamoto, and H. Yamamoto, “Diabetes alters subsets of endothelial progenitor cells that reside in blood, bone marrow, and spleen,” American Journal of Physiology, vol. 302, no. 6, pp. C892–C901, 2012.
  68. C. J. M. Loomans, E. J. P. De Koning, F. J. T. Staal et al., “Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes,” Diabetes, vol. 53, no. 1, pp. 195–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Shen, Q. Li, Y. C. Zhang et al., “Advanced glycation endproducts increase EPC apoptosis and decrease nitric oxide release via MAPK pathways,” Biomedicine and Pharmacotherapy, vol. 64, no. 1, pp. 35–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Reinhard, P. Karl Jacobsen, M. Lajer et al., “Multifactorial treatment increases endothelial progenitor cells in patients with type 2 diabetes,” Diabetologia, vol. 53, no. 10, pp. 2129–2133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. J. B. Acosta, D. Garcia Del Barco, D. Cibrian Vera et al., “The pro-inflammatory environment in recalcitrant diabetic foot wounds,” International Wound Journal, vol. 5, no. 4, pp. 530–539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Jagannathan-Bogdan, M. E. McDonnell, H. Shin et al., “Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes,” Journal of Immunology, vol. 186, no. 2, pp. 1162–1172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Weigelt, B. Rose, U. Poschen et al., “Immune mediators in patients with acute diabetic foot syndrome,” Diabetes Care, vol. 32, no. 8, pp. 1491–1496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Tuvdendorj, X. J. Zhang, D. L. Chinkes et al., “Intensive insulin treatment increases donor site wound protein synthesis in burn patients,” Surgery, vol. 149, no. 4, pp. 512–518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. X. J. Zhang, D. L. Chinkes, Ø. Irtun, and R. R. Wolfe, “Anabolic action of insulin on skin wound protein is augmented by exogenous amino acids,” American Journal of Physiology, vol. 282, no. 6, pp. E1308–E1315, 2002. View at Scopus
  76. C. M. Adams, “Role of the transcription factor ATF4 in the anabolic actions of insulin and the anti-anabolic actions of glucocorticoids,” Journal of Biological Chemistry, vol. 282, no. 23, pp. 16744–16753, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. V. Gupta, “Pleiotropic effects of incretins,” Indian Journal of Endocrinology and Metabolism, vol. 16, supplement 1, pp. S47–S56, 2012.
  78. N. N. Ta, Y. Li, C. A. Schuyler, M. F. Lopes-Virella, and Y. Huang, “DPP-4 (CD26) inhibitor alogliptin inhibits TLR4-mediated ERK activation and ERK-dependent MMP-1 expression by U937 histiocytes,” Atherosclerosis, vol. 213, no. 2, pp. 429–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Galkowska, U. Wojewodzka, and W. L. Olszewski, “Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers,” Wound Repair and Regeneration, vol. 14, no. 5, pp. 558–565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Blakytny and E. B. Jude, “Altered molecular mechanisms of diabetic foot ulcers,” International Journal of Lower Extremity Wounds, vol. 8, no. 2, pp. 95–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. C. D. Surh and J. Sprent, “TGF-beta puts the brakes on homeostatic proliferation,” Nature Immunology, vol. 13, no. 7, pp. 628–630, 2012.
  82. W. P. Daley, S. B. Peters, and M. Larsen, “Extracellular matrix dynamics in development and regenerative medicine,” Journal of Cell Science, vol. 121, no. 3, pp. 255–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Schultz, J. Berlanga-Acosta, L. Cowan, and J. Stechmiller, “Linking the advanced glycation endproducts/receptor for advanced glycation endproducts pathway in diabetics with inflammation and topical antiinflammatory treatments of chronic wounds,” in Advances in Wound Care, C. K. Sen, Ed., vol. 1, The Ohio State University Medical Center, Ohio, USA, 2010.
  84. D. Skoutas, N. Papanas, G. S. Georgiadis et al., “Risk factors for ipsilateral reamputation in patients with diabetic foot lesions,” International Journal of Lower Extremity Wounds, vol. 8, no. 2, pp. 69–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. M. A. M. Loots, E. N. Lamme, J. Zeegelaar, J. R. Mekkes, J. D. Bos, and E. Middelkoop, “Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds,” Journal of Investigative Dermatology, vol. 111, no. 5, pp. 850–857, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. E. Black, J. Vibe-Petersen, L. N. Jorgensen et al., “Decrease of collagen deposition in wound repair in type 1 diabetes independent of glycemic control,” Archives of Surgery, vol. 138, no. 1, pp. 34–40, 2003. View at Scopus
  87. S. M. Sliman, T. D. Eubank, S. R. Kotha et al., “Hyperglycemic oxoaldehyde, glyoxal, causes barrier dysfunction, cytoskeletal alterations, and inhibition of angiogenesis in vascular endothelial cells: aminoguanidine protection,” Molecular and Cellular Biochemistry, vol. 333, no. 1-2, pp. 9–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Berlanga-Acosta, G. S. Schultz, and P. Lopez-Saura, “Biology of the diabetic wound,” in Foot Ulcers: Causes, Diagnosis and Treatments, P. E. Overhaussen, Ed., Nova Science Publishers, Hauppauge, NY, USA, 2009.
  89. G. D. Mulder, D. K. Lee, and N. S. Jeppesen, “Comprehensive review of the clinical application of autologous mesenchymal stem cells in the treatment of chronic wounds and diabetic bone healing,” International Wound Journal, vol. 9, no. 6, pp. 595–600, 2012.
  90. M. L. Usui, J. N. Mansbridge, W. G. Carter, M. Fujita, and J. E. Olerud, “Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds,” Journal of Histochemistry and Cytochemistry, vol. 56, no. 7, pp. 687–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Wetzler, H. Kampfer, B. Stallmeyer, J. Pfeilschifter, and S. Frank, “Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair,” Journal of Investigative Dermatology, vol. 115, no. 2, pp. 245–253, 2000. View at Publisher · View at Google Scholar · View at Scopus
  92. B. C. Nwomeh, D. R. Yager, and I. K. Cohen, “Physiology of the chronic wound,” Clinics in Plastic Surgery, vol. 25, no. 3, pp. 341–356, 1998. View at Scopus
  93. G. Naguib, H. Al-Mashat, T. Desta, and D. T. Graves, “Diabetes prolongs the inflammatory response to a bacterial stimulus through cytokine dysregulation,” Journal of Investigative Dermatology, vol. 123, no. 1, pp. 87–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. M. T. Goldberg, Y. P. Han, C. Yan, M. C. Shaw, and W. L. Garner, “TNF-α suppresses α-smooth muscle actin expression in human dermal fibroblasts: an implication for abnormal wound healing,” Journal of Investigative Dermatology, vol. 127, no. 11, pp. 2645–2655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. B. A. Mast and G. S. Schultz, “Interactions of cytokines, growth factors, and proteases in acute and chronic wounds,” Wound Repair and Regeneration, vol. 4, no. 4, pp. 411–420, 1996. View at Scopus
  96. S. J. Weiss, “Tissue destruction by neutrophils,” New England Journal of Medicine, vol. 320, no. 6, pp. 365–376, 1989. View at Scopus
  97. A. Piwowar, M. Knapik-Kordecka, and M. Warwas, “Concentration of leukocyte elastase in plasma and polymorphonuclear neutrophil extracts in type 2 diabetes,” Clinical Chemistry and Laboratory Medicine, vol. 38, no. 12, pp. 1257–1261, 2000. View at Publisher · View at Google Scholar · View at Scopus
  98. C. M. Stanley, Y. Wang, S. Pal et al., “Fibronectin fragmentation is a feature of periodontal disease sites and diabetic foot and leg wounds and modifies cell behavior,” Journal of Periodontology, vol. 79, no. 5, pp. 861–875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. W. C. Duckworth, J. Fawcett, S. Reddy, and J. C. Page, “Insulin-degrading activity in wound fluid,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 2, pp. 847–851, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. C. S. Mantzoros, S. Moschos, I. Avramopoulos et al., “Leptin concentrations in relation to body mass index and the tumor necrosis factor-α system in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 10, pp. 3408–3413, 1997. View at Publisher · View at Google Scholar · View at Scopus
  101. Q. Mi, B. Rivière, G. Clermont, D. L. Steed, and Y. Vodovotz, “Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-β1,” Wound Repair and Regeneration, vol. 15, no. 5, pp. 671–682, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. M. H. Zou, C. Shi, and R. A. Cohen, “High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H2 receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells,” Diabetes, vol. 51, no. 1, pp. 198–203, 2002. View at Scopus
  103. N. Petrova and M. Edmonds, “Emerging drugs for diabetic foot ulcers,” Expert Opinion on Emerging Drugs, vol. 11, no. 4, pp. 709–724, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Desmoulière, C. Chaponnier, and G. Gabbiani, “Tissue repair, contraction, and the myofibroblast,” Wound Repair and Regeneration, vol. 13, no. 1, pp. 7–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Mori, A. Bellini, M. A. Stacey, M. Schmidt, and S. Mattoli, “Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow,” Experimental Cell Research, vol. 304, no. 1, pp. 81–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. G. P. Fadini and A. Avogaro, “It is all in the blood: the multifaceted contribution of circulating progenitor cells in diabetic complications,” Experimental Diabetes Research, vol. 2012, Article ID 742976, 8 pages, 2012. View at Publisher · View at Google Scholar
  107. D. M. Bermudez, J. Xu, B. J. Herdrich, A. Radu, M. E. Mitchell, and K. W. Liechty, “Inhibition of stromal cell-derived factor-1α further impairs diabetic wound healing,” Journal of Vascular Surgery, vol. 53, no. 3, pp. 774–784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. D. Pilling, C. D. Buckley, M. Salmon, and R. H. Gomer, “Inhibition of fibrocyte differentiation by serum amyloid P,” Journal of Immunology, vol. 171, no. 10, pp. 5537–5546, 2003. View at Scopus
  109. M. I. Morasso and M. Tomic-Canic, “Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing,” Biology of the Cell, vol. 97, no. 3, pp. 173–183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Deveci, R. R. Gilmont, W. R. Dunham, B. P. Mudge, D. J. Smith, and C. L. Marcelo, “Glutathione enhances fibroblast collagen contraction and protects keratinocytes from apoptosis in hyperglycaemic culture,” British Journal of Dermatology, vol. 152, no. 2, pp. 217–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. C. C. E. Lan, I. H. Liu, A. H. Fang, C. H. Wen, and C. S. Wu, “Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes,” British Journal of Dermatology, vol. 159, no. 5, pp. 1103–1115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. P. Zhu, C. Yang, L. H. Chen, M. Ren, G. J. Lao, and L. Yan, “Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified BSA,” Archives of Dermatological Research, vol. 303, no. 5, pp. 339–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. A. El Ghalbzouri, P. Hensbergen, S. Gibbs, J. Kempenaar, R. Van Der Schors, and M. Ponec, “Fibroblasts facilitate re-epithelialization in wounded human skin equivalents,” Laboratory Investigation, vol. 84, no. 1, pp. 102–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. Liu, M. Petreaca, M. Yao, and M. Martins-Green, “Cell and molecular mechanisms of keratinocyte function stimulated by insulin during wound healing,” BMC Cell Biology, vol. 10, article 1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. I. Goren, E. Müller, D. Schiefelbein et al., “Akt1 controls insulin-driven VEGF biosynthesis from keratinocytes: implications for normal and diabetes-impaired skin repair in mice,” Journal of Investigative Dermatology, vol. 129, no. 3, pp. 752–764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Terashi, K. Izumi, M. Deveci, L. M. Rhodes, and C. L. Marcelo, “High glucose inhibits human epidermal keratinocyte proliferation for cellular studies on diabetes mellitus,” International Wound Journal, vol. 2, no. 4, pp. 298–326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. E. Wertheimer, N. Spravchikov, M. Trebicz et al., “The regulation of skin proliferation and differentiation in the IR null mouse: implications for skin complications of diabetes,” Endocrinology, vol. 142, no. 3, pp. 1234–1241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  118. T. Banno, A. Gazel, and M. Blumenberg, “Effects of tumor necrosis factor-α (TNFα) in epidermal keratinocytes revealed using global transcriptional profiling,” Journal of Biological Chemistry, vol. 279, no. 31, pp. 32633–32642, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. O. Stojadinovic, H. Brem, C. Vouthounis et al., “Molecular pathogenesis of chronic wounds: the role of β-catenin and c-myc in the inhibition of epithelialization and wound healing,” American Journal of Pathology, vol. 167, no. 1, pp. 59–69, 2005. View at Scopus
  120. R. K. Sivamani, M. S. Garcia, and R. Rivkah Isseroff, “Wound re-epithelialization: modulating keratinocyte migration in wound healing,” Frontiers in Bioscience, vol. 12, no. 8, pp. 2849–2868, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. P. A. Coulombe, “Wound epithelialization: accelerating the pace of discovery,” The Journal of Investigative Dermatology, vol. 121, no. 2, pp. 219–230, 2003. View at Scopus
  122. L. B. Nanney, S. Paulsen, M. K. Davidson, N. L. Cardwell, J. S. Whitsitt, and J. M. Davidson, “Boosting epidermal growth factor receptor expression by gene gun transfection stimulates epidermal growth in vivo,” Wound Repair and Regeneration, vol. 8, no. 2, pp. 117–127, 2000. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Li, Q. Wang, Y. Wang, X. Chen, and Z. Wang, “PLC-γ1 and Rac1 coregulate EGF-induced cytoskeleton remodeling and cell migration,” Molecular Endocrinology, vol. 23, no. 6, pp. 901–913, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. D. F. Kusewitt, C. Choi, K. M. Newkirk et al., “Slug/Snai2 is a downstream mediator of epidermal growth factor receptor-stimulated reepithelialization,” Journal of Investigative Dermatology, vol. 129, no. 2, pp. 491–495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Frank, G. Hubner, G. Breier, M. T. Longaker, D. G. Greenhalgh, and S. Werner, “Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing,” Journal of Biological Chemistry, vol. 270, no. 21, pp. 12607–12613, 1995. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Aoki, S. Toda, T. Ando, and H. Sugihara, “Bone marrow stromal cells, preadipocytes, and dermal fibroblasts promote epidermal regeneration in their distinctive fashions,” Molecular Biology of the Cell, vol. 15, no. 10, pp. 4647–4657, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. V. Gopalakrishnan, R. C. Vignesh, J. Arunakaran, M. M. Aruldhas, and N. Srinivasan, “Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages,” Biochemistry and Cell Biology, vol. 84, no. 1, pp. 93–101, 2006. View at Publisher · View at Google Scholar · View at Scopus