About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 262313, 7 pages
http://dx.doi.org/10.1155/2013/262313
Review Article

Hyperthermia as Adjunct to Intravesical Chemotherapy for Bladder Cancer

Division of Urology, Duke University Medical Center, Box 2812, Durham, NC 27710, USA

Received 17 May 2013; Accepted 1 August 2013

Academic Editor: Shyh-Dar Li

Copyright © 2013 Richmond A. Owusu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, C. DeSantis, K. Virgo, et al., “Cancer treatment and survivorship statistics,” Cancer Journal for Clinicians, vol. 62, no. 4, pp. 220–241, 2012.
  2. M. Burger, J. W. Catto, G. Dalbagni, et al., “Epidemiology and risk factors of urothelial bladder cancer,” European Urology, vol. 63, no. 2, pp. 234–241, 2013.
  3. M. F. Botteman, C. L. Pashos, A. Redaelli, B. Laskin, and R. Hauser, “The health economics of bladder cancer: a comprehensive review of the published literature,” PharmacoEconomics, vol. 21, no. 18, pp. 1315–1330, 2003. View at Scopus
  4. P. E. Clark, N. Agarwal, M. C. Biagioli, et al., “Bladder cancer,” Journal of the National Comprehensive Cancer Network, vol. 11, no. 4, pp. 446–475, 2013.
  5. M. R. Abern, R. A. Owusu, M. R. Anderson, E. N. Rampersaud, and B. A. Inman, “Perioperative intravesical chemotherapy in non-muscle-invasive bladder cancer: a systematic review and meta-analysis,” Journal of the National Comprehensive Cancer Network, vol. 11, no. 4, pp. 477–484, 2013.
  6. R. J. M. Lammers, J. A. Witjes, B. A. Inman et al., “The role of a combined regimen with intravesical chemotherapy and hyperthermia in the management of non-muscle-invasive bladder cancer: a systematic review,” European Urology, vol. 60, no. 1, pp. 81–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. W. B. Coley, “The treatment of Inoperable Sarcoma by bacterial toxins (the mixed toxins of the streptococcus erysipelas and the Bacillus prodigiosus),” Proceedings of the Royal Society of Medicine, vol. 3, pp. 1–48, 1910.
  8. L. R. Zacharski and V. P. Sukhatme, “Coley's toxin revisited: immunotherapy or plasminogen activator therapy of cancer?” Journal of Thrombosis and Haemostasis, vol. 3, no. 3, pp. 424–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. D. I. Sessler, “Thermoregulatory defense mechanisms,” Critical Care Medicine, vol. 37, no. 7, supplement, pp. S203–S210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. E. N. Rampersaud, Z. Vujaskovic, and B. A. Inman, “Hyperthermia as a treatment for bladder cancer,” Oncology, vol. 24, no. 12, pp. 1149–1155, 2010. View at Scopus
  11. O. S. Selawry, M. N. Goldstein, and C. T. Mc, “Hyperthermia in tissue-cultured cells of malignant origin,” Cancer Research, vol. 17, no. 8, pp. 785–791, 1957.
  12. B. Hildebrandt, P. Wust, O. Ahlers et al., “The cellular and molecular basis of hyperthermia,” Critical Reviews in Oncology/Hematology, vol. 43, no. 1, pp. 33–56, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Coss, W. C. Dewey, and J. R. Bamburg, “Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro,” Cancer Research, vol. 42, no. 3, pp. 1059–1071, 1982. View at Scopus
  14. M. Jäättelä, “Heat shock proteins as cellular lifeguards,” Annals of Medicine, vol. 31, no. 4, pp. 261–271, 1999. View at Scopus
  15. B. Eppink, P. M. Krawczyk, J. Stap, and R. Kanaar, “Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies,” International Journal of Hyperthermia, vol. 28, no. 6, pp. 509–517, 2012.
  16. W. C. Dewey, A. Westra, H. H. Miller, and H. Nagasawa, “Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine,” International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, vol. 20, no. 6, pp. 505–520, 1971. View at Scopus
  17. M. J. Kluger, “The evolution and adaptive value of fever,” American Scientist, vol. 66, no. 1, pp. 38–43, 1978. View at Scopus
  18. B. Frey, E. M. Weiss, Y. Rubner et al., “Old and new facts about hyperthermia-induced modulations of the immune system,” International Journal of Hyperthermia, vol. 28, no. 6, pp. 528–542, 2012.
  19. R. J. Binder and P. K. Srivastava, “Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells,” Nature Immunology, vol. 6, no. 6, pp. 593–599, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Srivastava, “Roles of heat-shock proteins in innate and adaptive immunity,” Nature Reviews Immunology, vol. 2, no. 3, pp. 185–194, 2002. View at Scopus
  21. P. Srivastava, “Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses,” Annual Review of Immunology, vol. 20, pp. 395–425, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. H. I. Robins, M. Kutz, G. J. Wiedemann et al., “Cytokine induction by 41.8°C whole body hyperthermia,” Cancer Letters, vol. 97, no. 2, pp. 195–201, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Chen, D. T. Fisher, K. A. Clancy et al., “Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism,” Nature Immunology, vol. 7, no. 12, pp. 1299–1308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. E. Dayanc, S. H. Beachy, J. R. Ostberg, and E. A. Repasky, “Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses,” International Journal of Hyperthermia, vol. 24, no. 1, pp. 41–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. D. Strauch, D. F. Fabian, J. Turner, and A. T. Lefor, “Combined hyperthermia and immunotherapy treatment of multiple pulmonary metastases in mice,” Surgical Oncology, vol. 3, no. 1, pp. 45–52, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Iwata, A. Shakil, W. J. Hur, C. M. Makepeace, R. J. Griffin, and C. W. Song, “Tumour pO2 can be increased markedly by mild hyperthermia,” The British Journal of Cancer, Supplement, vol. 27, pp. S217–S221, 1996. View at Scopus
  27. X. Sun, L. Xing, C. Clifton Ling, and G. C. Li, “The effect of mild temperature hyperthermia on tumour hypoxia and blood perfusion: relevance for radiotherapy, vascular targeting and imaging,” International Journal of Hyperthermia, vol. 26, no. 3, pp. 224–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Vaupel, F. Kallinowski, and M. Kluge, “Pathophysiology of tumors in hyperthermia,” Recent Results in Cancer Research, vol. 107, pp. 65–75, 1988. View at Scopus
  29. R. Colombo, A. Lev, L. F. Da Pozzo, M. Freschi, G. Gallus, and P. Rigatti, “A new approach using local combined microwave hyperthermia and chemotherapy in superficial transitional bladder carcinoma treatment,” Journal of Urology, vol. 153, no. 3, pp. 959–963, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Van Der Zee, D. González González, G. C. Van Rhoon, J. D. P. Van Dijk, W. L. J. Van Putten, and A. A. M. Hart, “Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial,” The Lancet, vol. 355, no. 9210, pp. 1119–1125, 2000. View at Scopus
  31. M. Wittlinger, C. M. Rödel, C. Weiss et al., “Quadrimodal treatment of high-risk T1 and T2 bladder cancer: transurethral tumor resection followed by concurrent radiochemotherapy and regional deep hyperthermia,” Radiotherapy and Oncology, vol. 93, no. 2, pp. 358–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. D. P. Van Dijk, C. Schneider, R. Van Os, L. E. C. M. Blank, and D. G. Gonzalez, “Results of deep body hyperthermia with large waveguide radiators,” Advances in Experimental Medicine and Biology, vol. 267, pp. 315–319, 1990. View at Scopus
  33. J. Crezee, P. M. A. Van Haaren, H. Westendorp et al., “Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study,” International Journal of Hyperthermia, vol. 25, no. 7, pp. 581–592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. De Greef, H. P. Kok, A. Bel, and J. Crezee, “3D versus 2D steering in patient anatomies: a comparison using hyperthermia treatment planning,” International Journal of Hyperthermia, vol. 27, no. 1, pp. 74–85, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. T. V. Samulski, W. J. Grant, J. R. Oleson et al., “Clinical experience with a multi-element ultrasonic hyperthermia system: analysis of treatment temperatures,” International Journal of Hyperthermia, vol. 6, no. 5, pp. 909–922, 1990. View at Scopus
  36. G. K. Ogilvie, H. A. Reynolds, B. C. Richardson, C. W. Badger, S. A. Goss, and E. C. Burdette, “Performance of a multi-sector ultrasound hyperthermia applicator and control system: in vivo studies,” International Journal of Hyperthermia, vol. 6, no. 3, pp. 697–705, 1990. View at Scopus
  37. R. Engelhardt, “Rational for clinical application of hyperthermia and drugs,” Revista Medico-Chirurgicala a Societatii de Medici si Naturalisti din Iasi, vol. 91, no. 2, pp. 347–352, 1987. View at Scopus
  38. R. Engelhardt, “Hyperthermia and drugs,” Recent Results in Cancer Research, vol. 104, pp. 136–203, 1987. View at Scopus
  39. R. A. Vertrees, G. C. Das, V. L. Popov et al., “Synergistic interaction of hyperthermia and gemcitabine in lung cancer,” Cancer Biology and Therapy, vol. 4, no. 10, pp. 1144–1153, 2005. View at Scopus
  40. A. G. Van Der Heijden, G. Verhaegh, C. F. J. Jansen, J. A. Schalken, and J. A. Witjes, “Effect of hyperthermia on the cytotoxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell carcinoma of the bladder: an in vitro study,” Journal of Urology, vol. 173, no. 4, pp. 1375–1380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. F. W. Longo, P. Tomashefsky, B. D. Rivin, and M. Tannenbaum, “Interaction of ultrasonic hyperthermia with two alkylating agents in a murine bladder tumor,” Cancer Research, vol. 43, no. 7, pp. 3231–3235, 1983. View at Scopus
  42. Z. Vujaskovic and C. W. Song, “Physiological mechanisms underlying heat-induced radiosensitization,” International Journal of Hyperthermia, vol. 20, no. 2, pp. 163–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. M. R. Horsman and J. Overgaard, “Hyperthermia: a potent enhancer of radiotherapy,” Clinical Oncology, vol. 19, no. 6, pp. 418–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. D. Issels, “Hyperthermia adds to chemotherapy,” European Journal of Cancer, vol. 44, no. 17, pp. 2546–2554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. P. Istomin, E. A. Zhavrid, E. N. Alexandrova, O. P. Sergeyeva, and S. V. Petrovich, “Dose enhancement effect of anticaner drugs associated with increased temperature in vitro,” Experimental Oncology, vol. 30, no. 1, pp. 56–59, 2008. View at Scopus
  46. R. Paroni, A. Salonia, A. Lev et al., “Effect of local hyperthermia of the bladder on mitomycin C pharmacokinetics during intravesical chemotherapy for the treatment of superficial transitional cell carcinoma,” The British Journal of Clinical Pharmacology, Supplement, vol. 52, no. 3, pp. 273–278, 2001. View at Scopus
  47. M. C. Hall, S. S. Chang, G. Dalbagni et al., “Guideline for the management of nonmuscle invasive bladder cancer (Stages Ta, T1, and Tis): 2007 update,” Journal of Urology, vol. 178, no. 6, pp. 2314–2330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Colombo, A. Salonia, Z. Leib, M. Pavone-Macaluso, and D. Engelstein, “Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC),” BJU International, vol. 107, no. 6, pp. 912–918, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. L. Immordino, F. Dosio, and L. Cattel, “Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential,” International Journal of Nanomedicine, vol. 1, no. 3, pp. 297–315, 2006. View at Scopus
  50. H.-I. Chang and M.-K. Yeh, “Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy,” International Journal of Nanomedicine, vol. 7, pp. 49–60, 2012. View at Scopus
  51. X. Zhang, P. F. Luckham, A. D. Hughes, S. Thom, and X. Y. Xu, “Towards an understanding of the release behavior of temperature-sensitive liposomes: a possible explanation of the, “pseudoequilibrium” release behavior at the phase transition temperature,” Journal of Liposome Research, vol. 23, no. 3, pp. 167–173, 2013. View at Publisher · View at Google Scholar
  52. W. T. Al-Jamal, Z. S. Al-Ahmady, and K. Kostarelos, “Pharmacokinetics & tissue distribution of temperature-sensitive liposomal doxorubicin in tumor-bearing mice triggered with mild hyperthermia,” Biomaterials, vol. 33, no. 18, pp. 4608–4617, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Gasselhuber, M. R. Dreher, A. Partanen et al., “Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: computational modelling and preliminary in vivo validation,” International Journal of Hyperthermia, vol. 28, no. 4, pp. 337–348, 2012.
  54. A. Partanen, P. S. Yarmolenko, A. Viitala, et al., “Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery,” International Journal of Hyperthermia, vol. 28, no. 4, pp. 320–336, 2012.
  55. A. Ranjan, G. C. Jacobs, D. L. Woods et al., “Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model,” Journal of Controlled Release, vol. 158, no. 3, pp. 487–494, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. M. de Smet, S. Langereis, S. van den Bosch et al., “SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound,” Journal of Controlled Release, vol. 169, pp. 182–290, 2013.
  57. A. A. Manzoor, L. H. Lindner, C. D. Landon, et al., “Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors,” Cancer Research, vol. 72, no. 21, pp. 5566–5575, 2012.
  58. T. Ta and T. M. Porter, “Thermosensitive liposomes for localized delivery and triggered release of chemotherapy,” Journal of Controlled Release, vol. 169, pp. 1112–2125, 2013.
  59. H. Grüll and S. Langereis, “Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound,” Journal of Controlled Release, vol. 161, no. 2, pp. 317–327, 2012.