About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 265171, 5 pages
http://dx.doi.org/10.1155/2013/265171
Clinical Study

Relationship between Pulsatility Index and Clinical Course of Acute Ischemic Stroke after Thrombolytic Treatment

Department of Neurology and Department of Cerebrovascular Disease and Stroke Unit, Faculty of Medicine, Eskisehir Osmangazi University, Meselik, 26480 Eskisehir, Turkey

Received 21 April 2013; Accepted 2 July 2013

Academic Editor: J. Mocco

Copyright © 2013 Nevzat Uzuner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Hacke, M. Kaste, E. Bluhmki et al., “Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke,” The New England Journal of Medicine, vol. 359, no. 13, pp. 1317–1329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Demchuk, I. Christou, T. H. Wein et al., “Specific transcranial Doppler flow findings related to the presence and site of arterial occlusion,” Stroke, vol. 31, no. 1, pp. 140–146, 2000. View at Scopus
  3. J. Allendoerfer, M. Goertler, and G.-M. von Reutern, “Prognostic relevance of ultra-early doppler sonography in acute ischaemic stroke: a prospective multicentre study,” Lancet Neurology, vol. 5, no. 10, pp. 835–840, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Wahlgren, N. Ahmed, A. Dávalos et al., “Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study,” Lancet, vol. 369, no. 9558, pp. 275–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. P. Adams Jr., B. H. Bendixen, L. J. Kappelle et al., “Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial,” Stroke, vol. 24, no. 1, pp. 35–41, 1993. View at Scopus
  6. R. G. Gosling and D. H. King, “Arterial assessment by Doppler shift ultrasound,” Proceedings of the Royal Society of Medicine, vol. 67, no. 6, pp. 447–449, 1974. View at Scopus
  7. C. Baracchini, R. Manara, M. Ermani, and G. Meneghetti, “The quest for early predictors of stroke evolution: can TCD be a guiding light?” Stroke, vol. 31, no. 12, pp. 2942–2947, 2000. View at Scopus
  8. B. MacHumpurath, S. M. Davis, and B. Yan, “Rapid neurological recovery after intravenous tissue plasminogen activator in stroke: prognostic factors and outcome,” Cerebrovascular Diseases, vol. 31, no. 3, pp. 278–280, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Demchuk, W. S. Burgin, I. Christou et al., “Thrombolysis in Brain Ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator,” Stroke, vol. 32, no. 1, pp. 89–93, 2001. View at Scopus
  10. E. Stolz, F. Cioli, J. Allendoerfer, T. Gerriets, M. D. Sette, and M. Kaps, “Can early neurosonology predict outcome in acute stroke? A metaanalysis of prognostic clinical effect sizes related to the vascular status,” Stroke, vol. 39, no. 12, pp. 3255–3261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Saqqur, C. A. Molina, A. Salam et al., “Clinical deterioration after intravenous recombinant tissue plasminogen activator treatment: a multicenter transcranial Doppler study,” Stroke, vol. 38, no. 1, pp. 69–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. V. Alexandrov, G. Tsivgoulis, M. Rubiera et al., “End-diastolic velocity increase predicts recanalization and neurological improvement in patients with ischemic stroke with proximal arterial occlusions receiving reperfusion therapies,” Stroke, vol. 41, no. 5, pp. 948–952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Little, F. W. L. Kerr, and T. M. Sundt Jr., “Microcirculatory obstruction in focal cerebral ischemia. Relationship to neuronal alterations,” Mayo Clinic Proceedings, vol. 50, no. 5, pp. 264–270, 1975. View at Scopus
  14. M. Ohtake, S. Morino, T. Kaidoh, and T. Inoué, “Three-dimensional structural changes in cerebral microvessels after transient focal cerebral ischemia in rats: scanning electron microscopic study of corrosion casts,” Neuropathology, vol. 24, no. 3, pp. 219–227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Yemisci, Y. Gursoy-Ozdemir, A. Vural, A. Can, K. Topalkara, and T. Dalkara, “Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery,” Nature Medicine, vol. 15, no. 9, pp. 1031–1037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Gursoy-Ozdemir, M. Yemisci, and T. Dalkara, “Microvascular protection is essential for successful neuroprotection in stroke,” Journal of Neurochemistry, vol. 123, supplement 2, pp. 2–11, 2012.