About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 265618, 9 pages
http://dx.doi.org/10.1155/2013/265618
Research Article

Biohydrogen Production and Kinetic Modeling Using Sediment Microorganisms of Pichavaram Mangroves, India

1Pollution Control Research Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India
2Core Group Pollution Prevention and Resource Recovery, Department of Environmental Engineering and Water Technology, UNESCO-IHE, P.O. Box 3015, 2601 DA, Delft, The Netherlands

Received 11 September 2013; Accepted 11 October 2013

Academic Editor: Kannan Pakshirajan

Copyright © 2013 P. Mullai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International energy outlook, “U.S. Energy Information Administration,” pp. 300, 2013.
  2. D. B. Levin, L. Pitt, and M. Love, “Biohydrogen production: prospects and limitations to practical application,” International Journal of Hydrogen Energy, vol. 29, no. 2, pp. 173–185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Venkata Mohan, Y. Vijaya Bhaskar, and P. N. Sarma, “Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia,” Water Research, vol. 41, no. 12, pp. 2652–2664, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. T. Skonieczny, Biological hydrogen production from industrial wastewater with Clostridium beijerinckii [M.S. dissertation], McGill University, 2008.
  5. G. E. Diwani, N. K. Attia, and S. I. Hawash, “Development and evaluation of biodiesel fuel and by-products from jatropha oil,” International Journal of Environmental Science and Technology, vol. 6, no. 2, pp. 219–224, 2009. View at Scopus
  6. H. Le Man, S. K. Behera, and H. S. Park, “Optimization of operational parameters for ethanol production from korean food waste leachate,” International Journal of Environmental Science and Technology, vol. 7, no. 1, pp. 157–164, 2010. View at Scopus
  7. H. N. Abubackar, M. C. Veiga, and C. Kennes, “Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol,” Biofuels, Bioproducts and Biorefining, vol. 5, no. 1, pp. 93–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Mullai, M. K. Yogeswari, and K. Sridevi, “Optimisation and enhancement of biohydrogen production using nickel nanoparticles—a novel approach,” Bioresource Technology, vol. 141, pp. 212–219, 2013. View at Publisher · View at Google Scholar
  9. P. Mullai, K. Sampath, and P. L. Sabarathinam, “Kinetic models anaerobic digestion of penicillin-G wastewater,” Chemical Engineering World, vol. 38, no. 12, pp. 161–164, 2003. View at Scopus
  10. P. Mullai, S. Arulselvi, H.-H. Ngo, and P. L. Sabarathinam, “Experiments and ANFIS modelling for the biodegradation of penicillin-G wastewater using anaerobic hybrid reactor,” Bioresource Technology, vol. 102, no. 9, pp. 5492–5497, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Mullai, H. H. Ngo, and P. L. Sabarathinam, “Substrate removal kinetics of an anaerobic hybrid reactor treating pharmaceutical wastewater,” Journal of Water Sustainability, vol. 1, no. 3, pp. 301–312, 2011.
  12. R. Kothari, D. P. Singh, V. V. Tyagi, and S. K. Tyagi, “Fermentative hydrogen production—an alternative clean energy source,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 2337–2346, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. F. R. Hawkes, R. Dinsdale, D. L. Hawkes, and I. Hussy, “Sustainable fermentative hydrogen production: challenges for process optimisation,” International Journal of Hydrogen Energy, vol. 27, no. 11-12, pp. 1339–1347, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Ren, J. Li, B. Li, Y. Wang, and S. Liu, “Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system,” International Journal of Hydrogen Energy, vol. 31, no. 15, pp. 2147–2157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Robaire, Biological hydrogen production using Citrobacter amalonaticus Y19 to catalyze the water-gas shift reaction [M.S. dissertation], McGill University, 2006.
  16. K. Vijayaraghavan and M. A. M. Soom, “Trends in bio-hydrogen generation—a review,” Environmental Sciences, vol. 3, pp. 255–271, 2006.
  17. K. Kathiresan, “A review of studies on Pichavaram mangrove, Southeast India,” Hydrobiologia, vol. 430, no. 1–3, pp. 185–205, 2000. View at Scopus
  18. K. Kathiresan, “Why are mangroves degrading?” Current Science, vol. 83, no. 10, pp. 10–25, 2002. View at Scopus
  19. D. Zhu, G. Wang, H. Qiao, and J. Cai, “Fermentative hydrogen production by the new marine Pantoea agglomerans isolated from the mangrove sludge,” International Journal of Hydrogen Energy, vol. 33, no. 21, pp. 6116–6123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Wang and W. Wan, “Kinetic models for fermentative hydrogen production: a review,” International Journal of Hydrogen Energy, vol. 34, no. 8, pp. 3313–3323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Zhao, H. Liu, H. Hu et al., “A fundamental research on combustion chemical kinetic model's precision property,” Science China Technological Sciences, vol. 53, no. 8, pp. 2222–2227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Mullai, E. R. Rene, H. S. Park, and P. L. Sabarathinam, “Adaptive network based fuzzy interference system (ANFIS) modeling of an anaerobic wastewater treatment process,” in Handbook of Research on Industrial Informatics and Manufacturing Intelligence: Innovations and Solutions, M. A. Khan and A. Q. Ansari, Eds., pp. 252–270, IGI, New York, NY, USA, 2012.
  23. J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, Tata MaGraw-Hill, New Delhi, India, 1986.
  24. K. Nath and D. Das, “Modeling and optimization of fermentative hydrogen production,” Bioresource Technology, vol. 102, no. 18, pp. 8569–8581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Koku, I. Eroǧlu, U. Gündüz, M. Yücel, and L. Türker, “Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001,” International Journal of Hydrogen Energy, vol. 28, no. 4, pp. 381–388, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Mu, G. Wang, and H.-Q. Yu, “Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures,” Bioresource Technology, vol. 97, no. 11, pp. 1302–1307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Niessen, F. Harnisch, M. Rosenbaum, U. Schröder, and F. Scholz, “Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation,” Electrochemistry Communications, vol. 8, no. 5, pp. 869–873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. APHA, Standard Methods for the Examination of Waste and Wastewater, American Public Health Associations, New York, NY, USA, 1995.
  29. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Scopus
  30. J. Wang and W. Wan, “The effect of substrate concentration on biohydrogen production by using kinetic models,” Science in China B, vol. 51, no. 11, pp. 1110–1117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. W. M. Alalayah, M. S. Kalil, A. A. H. Kadhum, J. M. Jahim, and N. M. Alauj, “Effect of environmental parameters on hydrogen production using Clostridium saccharoperbutylacetonicum N1-4(ATCC 13564),” American Journal of Environmental Sciences, vol. 5, no. 1, pp. 80–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. K. Khanal, W.-H. Chen, L. Li, and S. Sung, “Biological hydrogen production: effects of pH and intermediate products,” International Journal of Hydrogen Energy, vol. 29, no. 11, pp. 1123–1131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Ferchichi, E. Crabbe, G.-H. Gil, W. Hintz, and A. Almadidy, “Influence of initial pH on hydrogen production from cheese whey,” Journal of Biotechnology, vol. 120, no. 4, pp. 402–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. J. L. Young Joon Lee, T. Miyahara, and T. Noike, “Effect of iron concentration on hydrogen fermentation,” Bioresource Technology, vol. 80, no. 3, pp. 227–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Yang and J. Shen, “Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch,” International Journal of Hydrogen Energy, vol. 31, no. 15, pp. 2137–2146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Wang and W. Wan, “Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures,” International Journal of Hydrogen Energy, vol. 33, no. 4, pp. 1215–1220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Y.-C. Lo, W.-M. Chen, C.-H. Hung, S.-D. Chen, and J.-S. Chang, “Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies,” Water Research, vol. 42, no. 4-5, pp. 827–842, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Sharma and B. Li, “Optimizing hydrogen production from organic wastewater treatment in batch reactors through experimental and kinetic analysis,” International Journal of Hydrogen Energy, vol. 34, no. 15, pp. 6171–6180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Kongjan, B. Min, and I. Angelidaki, “Biohydrogen production from xylose at extreme thermophilic temperatures (70°C) by mixed culture fermentation,” Water Research, vol. 43, no. 5, pp. 1414–1424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. F. J. Fernández-Morales, J. Villaseñor, and D. Infantes, “Modeling and monitoring of the acclimatization of conventional activated sludge to a biohydrogen producing culture by biokinetic control,” International Journal of Hydrogen Energy, vol. 35, no. 20, pp. 10927–10933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. F. J. Fernández, J. Villaseñor, and D. Infantes, “Kinetic and stoichiometric modelling of acidogenic fermentation of glucose and fructose,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3877–3883, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Zainol, “Kinetics of biogas production from banana stem waste,” in Biogas, S. Kumar, Ed., p. 408, InTech, Europe, 2012.
  43. X. Yuan, X. Shi, P. Zhang, Y. Wei, R. Guo, and L. Wang, “Anaerobic biohydrogen production from wheat stalk by mixed microflora: kinetic model and particle size influence,” Bioresource Technology, vol. 102, no. 19, pp. 9007–9012, 2011. View at Publisher · View at Google Scholar · View at Scopus