About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 279371, 22 pages
http://dx.doi.org/10.1155/2013/279371
Review Article

Recent Advances in Particulate Matter and Nanoparticle Toxicology: A Review of the In Vivo and In Vitro Studies

1Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE
2Department of Air Pollution and Noise, Norwegian Institute of Public Health, N-0403 Oslo, Norway
3Aerobiology Laboratory, Atmospheric Sciences Center, Universidad Nacional Autónoma de México, 04510 Mexico City, DF, Mexico
4Environmental Toxicology Laboratory, Instituto Nacional de Cancerología, México. Avenido San Fernando 22, Tlalpan, 14080 Mexico City, DF, Mexico

Received 7 March 2013; Revised 8 May 2013; Accepted 22 May 2013

Academic Editor: Tim Nawrot

Copyright © 2013 Abderrahim Nemmar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Brook, S. Rajagopalan, C. A. Pope et al., “Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the american heart association,” Circulation, vol. 121, no. 21, pp. 2331–2378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Nemery, P. H. M. Hoet, and A. Nemmar, “The Meuse Valley fog of 1930: an air pollution disaster,” The Lancet, vol. 357, no. 9257, pp. 704–708, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. G. Townsend, “Investigation of the smog incident in Donora, Pa., and vicinity,” American Journal of Public Health, vol. 40, no. 2, pp. 183–189, 1950. View at Scopus
  4. W. P. D. Logan, “Mortality in the London fog incident,” The Lancet, vol. 261, no. 6755, pp. 336–338, 1953. View at Scopus
  5. M. R. Gwinn and V. Vallyathan, “Nanoparticles: health effects—pros and cons,” Environmental Health Perspectives, vol. 114, no. 12, pp. 1818–1825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. WHO air quality guidelines, global update. Report on a Working Group meeting, Bonn, Germany, WHO Regional Office for Europe, Copenhagen, Denmark, 2005, http://www.euro.who.int/document/e87950.pdf.
  7. A. Ibald-Mulli, H.-E. Wichmann, W. Kreyling, and A. Peters, “Epidemiological evidence on health effects of ultrafine particles,” Journal of Aerosol Medicine, vol. 15, no. 2, pp. 189–201, 2002. View at Scopus
  8. “U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards,” Revisions to the ambient monitoring regulations: relevancy for the AIRNOW community, 2007.
  9. C. Xiong and S. K. Friedlander, “Morphological properties of atmospheric aerosol aggregates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 11851–11856, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Wåhlin, F. Palmgren, and R. Van Dingenen, “Experimental studies of ultrafine particles in streets and the relationship to traffic,” Atmospheric Environment, vol. 35, no. 1, pp. S63–S69, 2001. View at Scopus
  11. A. Kocbach, Y. Li, K. E. Yttri, F. R. Cassee, P. E. Schwarze, and E. Namork, “Physicochemical characterisation of combustion particles from vehicle exhaust and residential wood smoke,” Particle and Fibre Toxicology, vol. 3, article 1, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Harrison and J. Yin, “Particulate matter in the atmosphere: which particle properties are important for its effects on health?” Science of the Total Environment, vol. 249, no. 1–3, pp. 85–101, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Becker, L. A. Dailey, J. M. Soukup, S. C. Grambow, R. B. Devlin, and Y.-C. T. Huang, “Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress,” Environmental Health Perspectives, vol. 113, no. 8, pp. 1032–1038, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Veranth, T. A. Moss, J. C. Chow et al., “Correlation of in vitro cytokine responses with the chemical composition of soil-derived particulate matter,” Environmental Health Perspectives, vol. 114, no. 3, pp. 341–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Rosas Pérez, J. Serrano, E. Alfaro-Moreno et al., “Relations between PM10 composition and cell toxicity: a multivariate and graphical approach,” Chemosphere, vol. 67, no. 6, pp. 1218–1228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Monn and S. Becker, “Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air,” Toxicology and Applied Pharmacology, vol. 155, no. 3, pp. 245–252, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. P. A. Steerenberg, L. Van Amelsvoort, M. Lovik et al., “Relation between sources of particulate air pollution and biological effect parameters in samples from four european cities: an exploratory study,” Inhalation Toxicology, vol. 18, no. 5, pp. 333–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Alfaro-Moreno, L. Martínez, C. García-Cuellar et al., “Biologic effects induced in vitro by PM10 from three different zones of Mexico City,” Environmental Health Perspectives, vol. 110, no. 7, pp. 715–720, 2002. View at Scopus
  19. J. M. Soukup and S. Becker, “Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxin,” Toxicology and Applied Pharmacology, vol. 171, no. 1, pp. 20–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Becker, M. J. Fenton, and J. M. Soukup, “Involvement of microbial components and toll-like receptors 2 and 4 in cytokine responses to air pollution particles,” American Journal of Respiratory Cell and Molecular Biology, vol. 27, no. 5, pp. 611–618, 2002. View at Scopus
  21. M. R. Wilson, J. H. Lightbody, K. Donaldson, J. Sales, and V. Stone, “Interactions between ultrafine particles and transition metals in vivo and in vitro,” Toxicology and Applied Pharmacology, vol. 184, no. 3, pp. 172–179, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Hassellöv, J. W. Readman, J. F. Ranville, and K. Tiede, “Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles,” Ecotoxicology, vol. 17, no. 5, pp. 344–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. G. Perrone, M. Gualtieri, V. Consonni, et al., “Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells,” Environmental Pollution, vol. 176, pp. 215–227, 2013.
  24. R. Quintana, J. Serrano, V. Gómez et al., “The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO Campaign,” Environmental Pollution, vol. 159, no. 12, pp. 3446–3454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. I. Levy, D. Diez, Y. Dou, C. D. Barr, and F. Dominici, “A meta-analysis and multisite time-series analysis of the differential toxicity of major fine particulate matter constituents,” American Journal of Epidemiology, vol. 175, no. 11, pp. 1091–1099, 2012.
  26. P. Schwarze, A. Totlandsdal, and J. I. Herseth, Importance of Components and Sources for Health Effects of Particulate Air Pollution, 2010.
  27. I. Rosas, A. Yela, E. Salinas, R. Arreguin, and A. Rodriguez-Romero, “Preliminary assessment of protein associated with airborne particles in Mexico City,” Aerobiologia, vol. 11, no. 2, pp. 81–86, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Y. Menetrez, K. K. Foarde, R. K. Esch et al., “An evaluation of indoor and outdoor biological particulate matter,” Atmospheric Environment, vol. 43, no. 34, pp. 5476–5483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Després, J. A. Huffman, and S. M. Burrows, “Primarybiological aerosol particles in theatmosphere: a review,” Tellus, vol. 64, pp. 1–58, 2012.
  30. M. Y. Menetrez, K. K. Foarde, and D. S. Ensor, “Fine biological PM: understanding size fractiontransport and exposure potential (Extended Abstract),” in Proceedings of the The Air and Waste Management Association Specialty Conference (PM '00), Particulate Matter and Health—The Scientific Basis for Regulatory Decision-making, Charlestown, SC, USA, 2000.
  31. M. Y. Menetrez, K. K. Foarde, and D. S. Ensor, “An analytical method for the measurement of nonviable bioaerosols,” Journal of the Air and Waste Management Association, vol. 51, no. 10, pp. 1436–1442, 2001. View at Scopus
  32. R. B. Knox, C. Suphioglu, P. Taylor et al., “Major grass pollen allergen Lol p 1 binds to diesel axhaust particles: implications for asthma and air pollution,” Clinical and Experimental Allergy, vol. 27, no. 3, pp. 246–251, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Ormstad, “Suspended particulate matter in indoor air: adjuvants and allergen carriers,” Toxicology, vol. 152, no. 1–3, pp. 53–68, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Adhikari, T. Reponen, S. A. Grinshpun, D. Martuzevicius, and G. Lemasters, “Correlation of ambient inhalable bioaerosols with particulate matter and ozone: a two-year study,” Environmental Pollution, vol. 140, no. 1, pp. 16–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Ferreira, T. Hawranek, P. Gruber, N. Wopfner, and A. Mari, “Allergic cross-reactivity: from gene to the clinic,” Allergy, vol. 59, no. 3, pp. 243–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Monn, “Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone,” Atmospheric Environment, vol. 35, no. 1, pp. 1–32, 2001. View at Scopus
  37. P. S. Thorne, “Inhalation toxicology models of endotoxin- and bioaerosol-induced inflammation,” Toxicology, vol. 152, no. 1–3, pp. 13–23, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Mueller-Annelling, E. Avol, J. M. Peters, and P. S. Thorne, “Ambient endotoxin concentrations in PM10 from Southern California,” Environmental Health Perspectives, vol. 112, no. 5, pp. 583–588, 2004. View at Scopus
  39. H. A. Burge and H. M. Ammann, Fungal Toxins and (1,3)-b-D-glucan; Bioaerosols: Assessment and Control, ACGIH, 1999.
  40. U. Singh, T. Reponen, K. J. Cho et al., “Airborne endotoxin and β-D-glucan in PM1 in agricultural and home environments,” Aerosol and Air Quality Research, vol. 11, no. 4, pp. 376–386, 2011. View at Scopus
  41. A. Nemmar, S. Al-Salam, S. Dhanasekaran, M. Sudhadevi, and B. H. Ali, “Pulmonary exposure to diesel exhaust particles promotes cerebral microvessel thrombosis: protective effect of a cysteine prodrug l-2-oxothiazolidine-4-carboxylic acid,” Toxicology, vol. 263, no. 2-3, pp. 84–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Nemmar, S. Al-Salam, S. Zia et al., “Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone,” British Journal of Pharmacology, vol. 164, no. 7, pp. 1871–1882, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. K.-I. Inoue, H. Takano, M. Sakurai et al., “Pulmonary exposure to diesel exhaust particles enhances coagulatory disturbance with endothelial damage and systemic inflammation related to lung inflammation,” Experimental Biology and Medicine, vol. 231, no. 10, pp. 1626–1632, 2006. View at Scopus
  44. D. R. Riva, C. B. Magalhães, A. A. Lopes et al., “Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice,” Inhalation Toxicology, vol. 23, no. 5, pp. 257–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. W. A. Zin, A. G. L. S. Silva, C. B. Magalhães et al., “Eugenol attenuates pulmonary damage induced by diesel exhaust particles,” Journal of Applied Physiology, vol. 112, no. 5, pp. 911–917, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. K. I. Paraskevas, A. A. Tzovaras, D. D. Briana, and D. P. Mikhailidis, “Emerging indications for statins: a pluripotent family of agents with several potential applications,” Current Pharmaceutical Design, vol. 13, no. 35, pp. 3622–3636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. P. Young, R. Hopkins, and T. E. Eaton, “Pharmacological actions of statins: potential utility in COPD,” European Respiratory Review, vol. 18, no. 114, pp. 222–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. S. A. Ferraro, J. S. Yakisich, F. T. Gallo, and D. R. Tasat, “Simvastatin pretreatment prevents ambient particle-induced lung injury in mice,” Inhalation Toxicology, vol. 23, no. 14, pp. 889–896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Miyata, N. Bai, R. Vincent, D. D. Sin, and S. F. van Eeden, “Novel properties of statins: suppression of the systemic and bone marrow responses induced by exposure to ambient particulate matter (PM10) air pollution,” American Journal of Physiology, vol. 303, no. 6, pp. L492–L499, 2012.
  50. E. Tamagawa, N. Bai, K. Morimoto et al., “Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction,” American Journal of Physiology, vol. 295, no. 1, pp. L79–L85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. M. L. North, N. Khanna, P. A. Marsden, H. Grasemann, and J. A. Scott, “Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma,” American Journal of Physiology, vol. 296, no. 6, pp. L911–L920, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. M. L. North, H. Amatullah, N. Khanna et al., “Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma,” Respiratory Research, vol. 12, article 19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. A. A. Götz, J. Rozman, H. G. Rödel et al., “Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets,” Particle and Fibre Toxicology, vol. 8, article 30, 2011. View at Scopus
  54. P. G. Barlow, D. M. Brown, K. Donaldson, J. MacCallum, and V. Stone, “Reduced alveolar macrophage migration induced by acute ambient particle (PM10) exposure,” Cell Biology and Toxicology, vol. 24, no. 3, pp. 243–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. S. Kim, A. Adamcakova-Dodd, P. T. O'Shaughnessy, V. H. Grassian, and P. S. Thorne, “Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model,” Particle and Fibre Toxicology, vol. 8, article 269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. K.-I. Inoue, H. Takano, R. Yanagisawa et al., “Effects of inhaled nanoparticles on acute lung injury induced by lipopolysaccharide in mice,” Toxicology, vol. 238, no. 2-3, pp. 99–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. K.-I. Inoue, R. Yanagisawa, E. Koike et al., “Effects of carbon black nanoparticles on elastase-induced emphysematous lung injury in mice,” Basic and Clinical Pharmacology and Toxicology, vol. 108, no. 4, pp. 234–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. S. Tsuji, A. D. Maynard, P. C. Howard et al., “Research strategies for safety evaluation of nanomaterials—part 4: risk assessment of nanoparticles,” Toxicological Sciences, vol. 89, no. 1, pp. 42–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. J. J. Li, S. Muralikrishnan, C.-T. Ng, L.-Y. L. Yung, and B.-H. Bay, “Nanoparticle-induced pulmonary toxicity,” Experimental Biology and Medicine, vol. 235, no. 9, pp. 1025–1033, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. K. Madl and K. E. Pinkerton, “Health effects of inhaled engineered and incidental nanoparticles Health effects of inhaled nanoparticles,” Critical Reviews in Toxicology, vol. 39, no. 8, pp. 629–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. C. M. Sayes, R. Wahi, P. A. Kurian et al., “Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells,” Toxicological Sciences, vol. 92, no. 1, pp. 174–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology, vol. 230, no. 1, pp. 90–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Nemmar, K. Melghit, and B. H. Ali, “The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats,” Experimental Biology and Medicine, vol. 233, no. 5, pp. 610–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Melghit and S. S. Al-Rabaniah, “Photodegradation of Congo red under sunlight catalysed by nanorod rutile TiO2,” Journal of Photochemistry and Photobiology A, vol. 184, no. 3, pp. 331–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Zhou, J. Yu, and B. Cheng, “Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method,” Journal of Hazardous Materials, vol. 137, no. 3, pp. 1838–1847, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. E. M. Rossi, L. Pylkkänen, A. J. Koivisto et al., “Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice,” Toxicological Sciences, vol. 113, no. 2, pp. 422–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Nemmar, K. Melghit, S. Al-Salam et al., “Acute respiratory and systemic toxicity of pulmonary exposure to rutile Fe-doped TiO2 nanorods,” Toxicology, vol. 279, no. 1–3, pp. 167–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. P. H. N. Saldiva, M. King, V. L. C. Delmonte et al., “Respiratory alterations due to urban air pollution: an experimental study in rats,” Environmental Research, vol. 57, no. 1, pp. 19–33, 1992. View at Scopus
  69. M. Lemos, A. J. F. C. Lichtenfels, E. Amaro Jr. et al., “Quantitative pathology of nasal passages in rats exposed to urban levels of air pollution,” Environmental Research, vol. 66, no. 1, pp. 87–95, 1994. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Yoshizaki, J. M. Brito, A. C. Toledo et al., “Subchronic effects of nasally instilled diesel exhaust particulates on the nasal and airway epithelia in mice,” Inhalation Toxicology, vol. 22, no. 7, pp. 610–617, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Kampfrath, A. Maiseyeu, Z. Ying et al., “Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways,” Circulation Research, vol. 108, no. 6, pp. 716–726, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. J. A. Deiuliis, T. Kampfrath, J. Zhong et al., “Pulmonary T cell activation in response to chronic particulate air pollution,” American Journal of Physiology, vol. 302, no. 4, pp. L399–L409, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. S. I. Rennard, “COPD: overview of definitions, epidemiology, and factors influencing its development,” Chest, vol. 113, pp. 235S–241S, 1998.
  74. F. D. T. Q. S. Lopes, T. S. Pinto, F. M. Arantes-Costa et al., “Exposure to ambient levels of particles emitted by traffic worsens emphysema in mice,” Environmental Research, vol. 109, no. 5, pp. 544–551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. C.-W. Lam, J. T. James, R. McCluskey, and R. L. Hunter, “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intractracheal instillation,” Toxicological Sciences, vol. 77, no. 1, pp. 126–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb, “Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats,” Toxicological Sciences, vol. 77, no. 1, pp. 117–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. J. B. Mangum, E. A. Turpin, A. Antao-Menezes, M. F. Cesta, E. Bermudez, and J. C. Bonner, “Single-walled carbon nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF mRNA and the formation of unique intercellular carbon structures that bridge alveolar macrophages In Situ,” Particle and Fibre Toxicology, vol. 3, article 15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. A. A. Shvedova, E. R. Kisin, R. Mercer et al., “Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice,” American Journal of Physiology, vol. 289, no. 5, pp. L698–L708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. A. A. Shvedova, E. Kisin, A. R. Murray et al., “Inhalation versus aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis,” American Journal of Physiology, vol. 295, no. 4, pp. L552–L565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. L. A. Mitchell, J. Gao, R. V. Wal, A. Gigliotti, S. W. Burchiel, and J. D. McDonald, “Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes,” Toxicological Sciences, vol. 100, no. 1, pp. 203–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Elgrabli, S. Abella-Gallart, F. Robidel, F. Rogerieux, J. Boczkowski, and G. Lacroix, “Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes,” Toxicology, vol. 253, no. 1–3, pp. 131–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Pauluhn, “Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit,” Regulatory Toxicology and Pharmacology, vol. 57, no. 1, pp. 78–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Nemmar, M. F. Hoylaerts, P. H. M. Hoet, and B. Nemery, “Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects,” Toxicology Letters, vol. 149, no. 1–3, pp. 243–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. G. Oberdörster, Z. Sharp, V. Atudorei et al., “Translocation of inhaled ultrafine particles to the brain,” Inhalation Toxicology, vol. 16, no. 6-7, pp. 437–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Nemmar, P. H. M. Hoet, B. Vanquickenborne et al., “Passage of inhaled particles into the blood circulation in humans,” Circulation, vol. 105, no. 4, pp. 411–414, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Nemmar, H. Vanbilloen, M. F. Hoylaerts, P. H. M. Hoet, A. Verbruggen, and B. Nemery, “Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 9, pp. 1665–1668, 2001. View at Scopus
  87. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Vermylen, A. Nemmar, B. Nemery, and M. F. Hoylaerts, “Ambient air pollution and acute myocardial infarction,” Journal of Thrombosis and Haemostasis, vol. 3, no. 9, pp. 1955–1961, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Seaton and K. Donaldson, “Nanoscience, nanotoxicology, and the need to think small,” The Lancet, vol. 365, no. 9463, pp. 923–924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Oberdörster, Z. Sharp, V. Atudorei et al., “Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats,” Journal of Toxicology and Environmental Health Part A, vol. 65, no. 20, pp. 1531–1543, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Elder, R. Gelein, V. Silva et al., “Translocation of inhaled ultrafine manganese oxide particles to the central nervous system,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1172–1178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. W. G. Kreyling, M. Semmler, F. Erbe et al., “Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low,” Journal of Toxicology and Environmental Health Part A, vol. 65, no. 20, pp. 1513–1530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. J. G. Wallenborn, J. K. McGee, M. C. Schladweiler, A. D. Ledbetter, and U. P. Kodavanti, “Systemic translocation of particulate matter-associated metals following a single intratracheal instillation in rats,” Toxicological Sciences, vol. 98, no. 1, pp. 231–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Takenaka, E. Karg, C. Roth et al., “Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats,” Environmental Health Perspectives, vol. 109, no. 4, pp. 547–551, 2001. View at Scopus
  95. J. E. Eyles, V. W. Bramwell, E. D. Williamson, and H. O. Alpar, “Microsphere translocation and immunopotentiation in systemic tissues following intranasal administration,” Vaccine, vol. 19, no. 32, pp. 4732–4742, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Kato, T. Yashiro, Y. Murata et al., “Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries,” Cell and Tissue Research, vol. 311, no. 1, pp. 47–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. N. Kapp, W. Kreyling, H. Schulz et al., “Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs,” Microscopy Research and Technique, vol. 63, no. 5, pp. 298–305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Geiser, B. Rothen-Rutishauser, N. Kapp et al., “Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells,” Environmental Health Perspectives, vol. 113, no. 11, pp. 1555–1560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. N. L. Mills, N. Amin, S. D. Robinson et al., “Do inhaled carbon nanoparticles translocate directly into the circulation in humans?” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 4, pp. 426–431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. N. L. Mills, K. Donaldson, P. W. Hadoke et al., “Adverse cardiovascular effects of air pollution,” Nature Clinical Practice Cardiovascular Medicine, vol. 6, no. 1, pp. 36–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Nemmar, S. Zia, D. Subramaniyan, I. Al-Amri, M. A. Al Kindi, and B. H. Ali, “Interaction of diesel exhaust particles with human, rat and mouse erythrocytes in vitro,” Cellular Physiology and Biochemistry, vol. 29, no. 1-2, pp. 163–170, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. B. H. Simon, H. Y. Ando, and P. K. Gupta, “Circulation time and body distribution of 14C-labeled amino-modified polystyrene nanoparticles in mice,” Journal of Pharmaceutical Sciences, vol. 84, no. 10, pp. 1249–1253, 1995. View at Publisher · View at Google Scholar · View at Scopus
  103. A. R. R. Péry, C. Brochot, P. H. M. Hoet, A. Nemmar, and F. Y. Bois, “Development of a physiologically based kinetic model for 99m-Technetium-labelled carbon nanoparticles inhaled by humans Human PBPK model for carbon nanoparticles,” Inhalation Toxicology, vol. 21, no. 13, pp. 1099–1107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. T. R. Nurkiewicz, D. W. Porter, M. Barger, V. Castranova, and M. A. Boegehold, “Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation,” Environmental Health Perspectives, vol. 112, no. 13, pp. 1299–1306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. T. R. Nurkiewicz, D. W. Porter, M. Barger et al., “Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure,” Environmental Health Perspectives, vol. 114, no. 3, pp. 412–419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. T. R. Nurkiewicz, D. W. Porter, A. F. Hubbs et al., “Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction,” Particle and Fibre Toxicology, vol. 5, article 1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. T. R. Nurkiewicz, D. W. Porter, A. F. Hubbs et al., “Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling,” Toxicological Sciences, vol. 110, no. 1, pp. 191–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Nemmar, M. F. Hoylaerts, P. H. M. Hoet et al., “Ultrafine particles affect experimental thrombosis in an in vivo hamster model,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 7, pp. 998–1004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Nemmar, P. H. M. Hoet, D. Dinsdale, J. Vermylen, M. F. Hoylaerts, and B. Nemery, “Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis,” Circulation, vol. 107, no. 8, pp. 1202–1208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Nemmar, B. Nemery, P. H. M. Hoet, J. Vermylen, and M. F. Hoylaerts, “Pulmonary inflammation and thrombogenicity caused by diesel particles in hamsters: role of histamine,” American Journal of Respiratory and Critical Care Medicine, vol. 168, no. 11, pp. 1366–1372, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Nemmar, P. H. M. Hoet, J. Vermylen, B. Nemery, and M. F. Hoylaerts, “Pharmacological stabilization of mast cells abrogates late thrombotic events induced by diesel exhaust particles in hamsters,” Circulation, vol. 110, no. 12, pp. 1670–1677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. V. M. Silva, N. Corson, A. Elder, and G. Oberdörster, “The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles (UFP),” Toxicological Sciences, vol. 85, no. 2, pp. 983–989, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. G. M. Mutlu, D. Green, A. Bellmeyer et al., “Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway,” Journal of Clinical Investigation, vol. 117, no. 10, pp. 2952–2961, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Yamashita and M. Yamashita, “Tumor necrosis factor alpha is involved in the induction of plasminogen activator inhibitor-1 by endotoxin,” Thrombosis Research, vol. 87, no. 2, pp. 165–170, 1997. View at Publisher · View at Google Scholar · View at Scopus
  115. G. R. S. Budinger, J. L. McKell, D. Urich et al., “Particulate matter-induced lung inflammation increases systemic levels of PAI-1 and activates coagulation through distinct mechanisms,” PLoS ONE, vol. 6, no. 4, Article ID e18525, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Nemmar, D. Subramaniyan, and B. H. Ali, “Protective effect of curcumin on pulmonary and cardiovascular effects induced by repeated exposure to diesel exhaust particles in mice,” PLoS ONE, vol. 7, Article ID e39554, 2012. View at Publisher · View at Google Scholar
  117. Q. Sun, P. Yue, Z. Ying et al., “Air pollution exposure potentiates hypertension through reactive oxygen species-mediated activation of Rho/ROCK,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 10, pp. 1760–1766, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. Z. Ying, P. Yue, X. Xu et al., “Air pollution and cardiac remodeling: a role for RhoA/Rho-kinase,” American Journal of Physiology, vol. 296, no. 5, pp. H1540–H1550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Nemmar, S. Zia, D. Subramaniyan, M. A. Fahim, and B. H. Ali, “Exacerbation of thrombotic events by diesel exhaust particle in mouse model of hypertension,” Toxicology, vol. 285, no. 1-2, pp. 39–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Nemmar, D. Subramaniyan, S. Zia, J. Yasin, and B. H. Ali, “Airway resistance, inflammation and oxidative stress following exposure to diesel exhaust particle in angiotensin II-induced hypertension in mice,” Toxicology, vol. 292, no. 2-3, pp. 162–168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Nemmar, S. Al-Salam, D. Subramaniyan et al., “Influence of experimental type 1 diabetes on the pulmonary effects of diesel exhaust particles in mice,” Toxicology Letters, vol. 217, no. 2, pp. 170–176, 2013.
  122. A. Nemmar, D. Subramaniyan, J. Yasin, and B. H. Ali, “Impact of experimental type 1 diabetes mellitus on systemic and coagulation vulnerability in mice acutely exposed to diesel exhaust particles,” Particle and Fibre Toxicology, vol. 10, no. 1, article 14, 2013.
  123. A. Nemmar, S. Al-Salam, S. Zia, J. Yasin, I. Al Husseni, and B. H. Ali, “Diesel exhaust particles in the lung aggravate experimental acute renal failure,” Toxicological Sciences, vol. 113, no. 1, pp. 267–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Nemmar, S. Al-Maskari, B. H. Ali, and I. S. Al-Amri, “Cardiovascular and lung inflammatory effects induced by systemically administered diesel exhaust particles in rats,” American Journal of Physiology, vol. 292, no. 3, pp. L664–L670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Nemmar, S. Dhanasekaran, J. Yasin et al., “Evaluation of the direct systemic and cardiopulmonary effects of diesel particles in spontaneously hypertensive rats,” Toxicology, vol. 262, no. 1, pp. 50–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Nemmar, S. Al-Salam, S. Zia, S. Dhanasekaran, M. Shudadevi, and B. H. Ali, “Time-course effects of systemically administered diesel exhaust particles in rats,” Toxicology Letters, vol. 194, no. 3, pp. 58–65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. C. Moon, H.-J. Park, Y.-H. Choi, E.-M. Park, V. Castranova, and J. L. Kang, “Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide (TiO2) at rest or in lungs primed with lipopolysaccharide,” Journal of Toxicology and Environmental Health Part A, vol. 73, no. 5-6, pp. 396–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Geys, A. Nemmar, E. Verbeken et al., “Acute toxicity and prothrombotic effects of Quantum dots: impact of surface charge,” Environmental Health Perspectives, vol. 116, no. 12, pp. 1607–1613, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. L. M. Y. Akinaga, A. J. Lichtenfels, R. Carvalho-Oliveira et al., “Effects of chronic exposure to air pollution from sao paulo city on coronary of swiss mice, from birth to adulthood,” Toxicologic Pathology, vol. 37, no. 3, pp. 306–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. L. C. Chen and J.-S. Hwang, “Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice—4. Characterization of acute and chronic effects of ambient air fine particulate matter exposures on heart-rate variability,” Inhalation Toxicology, vol. 17, no. 4-5, pp. 209–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. Q. Sun, A. Wang, X. Jin et al., “Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model,” Journal of the American Medical Association, vol. 294, no. 23, pp. 3003–3010, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. L. C. Chen and C. Nadziejko, “Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice—5. CAPs exacerbate aortic plaque development in hyperlipidemic mice,” Inhalation Toxicology, vol. 17, no. 4-5, pp. 217–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. Q. Sun, P. Yue, R. I. Kirk et al., “Ambient air particulate matter exposure and tissue factor expression in atherosclerosis,” Inhalation Toxicology, vol. 20, no. 2, pp. 127–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. Q. Sun, P. Yue, J. A. Deiuliis et al., “Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity,” Circulation, vol. 119, no. 4, pp. 538–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. G. S. Kang, P. A. Gillespie, A. Gunnison, A. L. Moreira, K.-M. Tchou-Wong, and L.-C. Chen, “Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model,” Environmental Health Perspectives, vol. 119, no. 2, pp. 176–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Emmerechts, V. De Vooght, S. Haenen, et al., “Thrombogenic changes in young and old mice upon subchronic exposure to air pollution in an urban roadside tunnel,” Thrombosis and Haemostasis, vol. 108, no. 4, pp. 756–768, 2012.
  137. A. Peters, B. Veronesi, L. Calderón-Garcidueñas et al., “Translocation and potential neurological effects of fine and ultrafine particles a critical update,” Particle and Fibre Toxicology, vol. 3, article 13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. R. G. Lucchini, D. C. Dorman, A. Elder, and B. Veronesi, “Neurological impacts from inhalation of pollutants and the nose-brain connection,” NeuroToxicology, vol. 33, pp. 838–841, 2012. View at Publisher · View at Google Scholar · View at Scopus
  139. A. I. Totlandsdal, J. I. Herseth, A. K. Bølling et al., “Differential effects of the particle core and organic extract of diesel exhaust particles,” Toxicology Letters, vol. 208, no. 3, pp. 262–268, 2012. View at Publisher · View at Google Scholar · View at Scopus
  140. J. Topinka, A. Milcova, J. Schmuczerova, M. Mazac, M. Pechout, and M. Vojtisek-Lom, “Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines,” Toxicology Letters, vol. 212, no. 1, pp. 11–17, 2012. View at Publisher · View at Google Scholar
  141. J. Topinka, P. Rossner, A. Milcova, J. Schmuczerova, V. Svecova, and R. J. Sram, “DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay,” Toxicology Letters, vol. 202, no. 3, pp. 186–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. R. K. Saxena, M. I. Gilmour, and M. D. Hays, “Isolation and quantitative estimation of diesel exhaust and carbon black particles ingested by lung epithelial cells and alveolar macrophages in vitro,” BioTechniques, vol. 44, no. 6, pp. 799–805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. P. E. Schwarze, J. Øvrevik, R. B. Hetland et al., “Importance of size and composition of particles for effects on cells in vitro,” Inhalation Toxicology, vol. 19, no. 1, pp. 17–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. N. Amara, R. Bachoual, M. Desmard et al., “Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism,” American Journal of Physiology, vol. 293, no. 1, pp. L170–L181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Ciganek, J. Neca, V. Adamec, J. Janosek, and M. Machala, “A combined chemical and bioassay analysis of traffic-emitted polycyclic aromatic hydrocarbons,” Science of the Total Environment, vol. 334-335, pp. 141–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. R. Barouki, M. Aggerbeck, L. Aggerbeck, and X. Coumoul, “The aryl hydrocarbon receptor system,” Drug Metabolism and Drug Interactions, vol. 27, no. 1, pp. 3–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  147. C. A. Pope III, R. T. Burnett, M. J. Thun et al., “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,” Journal of the American Medical Association, vol. 287, no. 9, pp. 1132–1141, 2002. View at Scopus
  148. P. Vineis, F. Forastiere, G. Hoek, and M. Lipsett, “Outdoor air pollution and lung cancer: recent epidemiologic evidence,” International Journal of Cancer, vol. 111, no. 5, pp. 647–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Geys, L. Coenegrachts, J. Vercammen et al., “In vitro study of the pulmonary translocation of nanoparticles: a preliminary study,” Toxicology Letters, vol. 160, no. 3, pp. 218–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. B. Rothen-Rutishauser, F. Blank, C. Muhlfeld, and P. Gehr, “In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter,” Expert Opinion on Drug Metabolism & Toxicology, vol. 4, pp. 1075–1089, 2008. View at Publisher · View at Google Scholar
  151. A. D. Lehmann, F. Blank, O. Baum, P. Gehr, and B. M. Rothen-Rutishauser, “Diesel exhaust particles modulate the tight junction protein occludin in lung cells in vitro,” Particle and Fibre Toxicology, vol. 6, article 26, 2009. View at Publisher · View at Google Scholar
  152. H. S. Rosenkranz, N. Pollack, and A. R. Cunningham, “Exploring the relationship between the inhibition of gap junctional intercellular communication and other biological phenomena,” Carcinogenesis, vol. 21, no. 5, pp. 1007–1011, 2000. View at Scopus
  153. L. M. Weis, A. M. Rummel, S. J. Masten, J. E. Trosko, and B. L. Upham, “Bay or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of gap junctional intercellular communication,” Environmental Health Perspectives, vol. 106, no. 1, pp. 17–22, 1998. View at Scopus
  154. L. Bláha, P. Kapplová, J. Vondrácek, B. Upham, and M. Machala, “Inhibition of gap-junctional intercellular communication by environmentally occurring polycyclic aromatic hydrocarbons,” Toxicological Sciences, vol. 65, no. 1, pp. 43–51, 2002. View at Publisher · View at Google Scholar
  155. J. J. Sharovskaja, A. V. Vaiman, N. A. Solomatina, and V. A. Kobliakov, “Inhibition of gap junction intercellular communications in cell culture by polycyclic aromatic hydrocarbons (PAH) in the absence of PAH metabolism,” Biochemistry, vol. 69, no. 4, pp. 413–419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Song, S. Ye, W. Sheng, and Y. Jiu, “Effects of diesel exhaust particle on gap junction intercellular communication,” Wei Sheng Yan Jiu, vol. 26, no. 3, pp. 145–147, 1997 (Chinese).
  157. G. M. Alink, M. Sjögren, R. P. Bos, G. Doekes, H. Kromhout, and P. T. Scheepers, “Effect of airborne particles from selected indoor and outdoor environments on gap-junctional intercellular communication,” Toxicology Letters, vol. 96-97, pp. 209–213, 1998.
  158. E. Rivedal, O. Myhre, T. Sanner, and I. Eide, “Supplemental role of the Ames mutation assay and gap junction intercellular communication in studies of possible carcinogenic compounds from diesel exhaust particles,” Archives of Toxicology, vol. 77, no. 9, pp. 533–542, 2003. View at Publisher · View at Google Scholar · View at Scopus
  159. W. L. Wendy Hsiao, Z.-Y. Mo, M. Fang, X.-M. Shi, and F. Wang, “Cytotoxicity of PM2.5 and PM2.5-10 ambient air pollutants assessed by the MTT and the Comet assays,” Mutation Research, vol. 471, no. 1-2, pp. 45–55, 2000. View at Publisher · View at Google Scholar · View at Scopus
  160. H. Bayram, K. Ito, R. Issa, M. Ito, M. Sukkar, and K. F. Chung, “Regulation of human lung epithelial cell numbers by diesel exhaust particles,” European Respiratory Journal, vol. 27, no. 4, pp. 705–713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Gualtieri, J. Øvrevik, S. Mollerup et al., “Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: effects on DNA, mitochondria, AhR binding and spindle organization,” Mutation Research, vol. 713, no. 1-2, pp. 18–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  162. C. Furuta, A. K. Suzuki, G. Watanabe, C. Li, S. Taneda, and K. Taya, “Nitrophenols isolated from diesel exhaust particles promote the growth of MCF-7 breast adenocarcinoma cells,” Toxicology and Applied Pharmacology, vol. 230, no. 3, pp. 320–326, 2008.
  163. S. M. Oh, B. T. Ryu, and K. H. Chung, “Identification of estrogenic and antiestrogenic activities of respirable diesel exhaust particles by bioassay-directed fractionation,” Archives of Pharmacal Research, vol. 31, no. 1, pp. 75–82, 2008. View at Publisher · View at Google Scholar
  164. S. L. Tannheimer, S. L. Barton, S. P. Ethier, and S. W. Burchiel, “Carcinogenic polycyclic aromatic hydrocarbons increase intracellular Ca2+ and cell proliferation in primary human mammary epithelial cells,” Carcinogenesis, vol. 18, no. 6, pp. 1177–1182, 1997. View at Publisher · View at Google Scholar · View at Scopus
  165. S. L. Tannheimer, S. P. Ethier, K. K. Caldwell, and S. W. Burchiel, “Benzo[α]pyrene- and TCDD-induced alterations in tyrosine phosphorylation and insulin-like growth factor signaling pathways in the MCF-10A human mammary epithelial cell line,” Carcinogenesis, vol. 19, no. 7, pp. 1291–1297, 1998. View at Publisher · View at Google Scholar · View at Scopus
  166. M. Plísková, J. Vondrácek, B. Vojtesek, A. Kozubík, and M. Machala, “Deregulation of cell proliferation by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events,” Toxicological Sciences, vol. 83, no. 2, pp. 246–256, 2005.
  167. K. Chramostová, J. Vondrácek, L. Sindlerová, B. Vojtesek, A. Kozubík, and M. Machala, “Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells,” Toxicology and Applied Pharmacology, vol. 196, no. 1, pp. 136–148, 2004.
  168. Z. Andrysík, J. Vondrácek, M. Machala, et al., “The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells,” Mutation Research, vol. 615, no. 1-2, pp. 87–97, 2007.
  169. Q. A. Khan, K. H. Vousden, and A. Dipple, “Cellular response to DNA damage from a potent carcinogen involves stabilization of p53 without induction of p21(waf1/cip1),” Carcinogenesis, vol. 18, no. 12, pp. 2313–2318, 1997. View at Publisher · View at Google Scholar · View at Scopus
  170. A. Dipple, “DNA reactions, mutagenic action and stealth properties of polycyclic aromatic hydrocarbon carcinogens,” International Journal of Oncology, vol. 14, no. 1, pp. 103–111, 1999. View at Scopus
  171. Y. Nakanishi, X.-H. Pei, K. Takayama et al., “Polycyclic aromatic hydrocarbon carcinogens increase ubiquitination of p21 protein after the stabilization of p53 and the expression of p21,” American Journal of Respiratory Cell and Molecular Biology, vol. 22, no. 6, pp. 747–754, 2000. View at Scopus
  172. E. Roudier, O. Mistafa, and U. Stenius, “Statins induce mammalian target of rapamycin (mTOR)-mediated inhibition of Akt signaling and sensitize p53-deficient cells to cytostatic drugs,” Molecular Cancer Therapeutics, vol. 5, no. 11, pp. 2706–2715, 2006. View at Publisher · View at Google Scholar · View at Scopus
  173. M. Malmlöf, G. Pääjärvi, J. Högberg, and U. Stenius, “Mdm2 as a sensitive and mechanistically informative marker for genotoxicity induced by benzo[a]pyrene and dibenzo[a,l]pyrene,” Toxicological Sciences, vol. 102, no. 2, pp. 232–240, 2008.
  174. J. L. Marlowe, Y. Fan, X. Chang et al., “The aryl hydrocarbon receptor binds to E2F1 and inhibits E2F1-induced apoptosis,” Molecular Biology of the Cell, vol. 19, no. 8, pp. 3263–3271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  175. A. Solhaug, M. Refsnes, M. Låg, P. E. Schwarze, T. Husøy, and J. A. Holme, “Polycyclic aromatic hydrocarbons induce both apoptotic and anti-apoptotic signals in Hepa1c1c7 cells,” Carcinogenesis, vol. 25, no. 5, pp. 809–819, 2004. View at Publisher · View at Google Scholar · View at Scopus
  176. N. E. Landvik, M. Gorria, V. M. Arlt et al., “Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis: possible implications for their mutagenic and carcinogenic effects,” Toxicology, vol. 231, no. 2-3, pp. 159–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  177. J. A. Holme, B. Trygg, and E. Søderlund, “Species differences in the metabolism of 2-acetylaminofluorene by hepatocytes in primary monolayer cultur,” Cancer Research, vol. 46, no. 4, pp. 1627–1632, 1986.
  178. U. Rannug, J. A. Holme, J. K. Hongslo, and R. Sram, “An evaluation of the genetic toxicity of paracetamol,” Mutation Research, vol. 327, no. 1-2, pp. 179–200, 1995. View at Publisher · View at Google Scholar · View at Scopus
  179. X. Tekpli, J. A. Holme, O. Sergent, and D. Lagadic-Gossmann, “Importance of plasma membrane dynamics in chemical-induced carcinogenesis,” Recent Patents on Anti-Cancer Drug Discovery, vol. 6, no. 3, pp. 347–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  180. D. Male, J. Brostoff, D. Roth, et al., Immunology, Elsevier, Amsterdam, The Netherlands, 2006.
  181. E. Alfaro-Moreno, C. M. García-Cuellar, A. De Vizcaya Ruiz, L. Rojas-Bracho, and A. Osornio-Vargas, “The cellular mechanisms behind particulate matter air pollution related health effects,” in Air Pollution: Health & Environmental Impacts, B. R. Gurjar, L. T. Molina, and C. S. P. Ojha, Eds., Taylor & Francis, 2010.
  182. H. Takizawa, T. Ohtoshi, S. Kawasaki et al., “Diesel exhaust particles activate human bronchial epithelial cells to express inflammatory mediators in the airways: a review,” Respirology, vol. 5, no. 2, pp. 197–203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Hashimoto, Y. Gon, I. Takeshita et al., “Diesel exhaust particles activate p38 MAP kinase to produce interleukin 8 and RANTES by human bronchial epithelial cells and N-acetylcysteine attenuates p38 MAP kinase activation,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 1, pp. 280–285, 2000. View at Scopus
  184. M. Gualtieri, J. Øvrevik, J. A. Holme et al., “Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells,” Toxicology in Vitro, vol. 24, no. 1, pp. 29–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  185. A. Baulig, M. Garlatti, V. Bonvallot et al., “Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells,” American Journal of Physiology, vol. 285, no. 3, pp. L671–L679, 2003. View at Scopus
  186. X. J. Yin, J. Y. C. Ma, J. M. Antonini, V. Castranova, and J. K. H. Ma, “Roles of reactive oxygen species and heme oxygenase-1 in modulation of alveolar macrophage-mediated pulmonary immune responses to Listeria monocytogenes by diesel exhaust particles,” Toxicological Sciences, vol. 82, no. 1, pp. 143–153, 2004. View at Publisher · View at Google Scholar · View at Scopus
  187. A. M. Knaapen, R. P. F. Schins, D. Polat, A. Becker, and P. J. A. Borm, “Mechanisms of neutrophil-induced DNA damage in respiratory tract epithelial cells,” Molecular and Cellular Biochemistry, vol. 234-235, pp. 143–151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  188. R. Becher, A. Bucht, J. Øvrevik et al., “Involvement of NADPH oxidase and iNOS in rodent pulmonary cytokine responses to urban air and mineral particles,” Inhalation Toxicology, vol. 19, no. 8, pp. 645–655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  189. A. Kocbach, J. I. Herseth, M. Låg, M. Refsnes, and P. E. Schwarze, “Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures,” Toxicology and Applied Pharmacology, vol. 232, no. 2, pp. 317–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  190. R. B. Hetland, F. R. Cassee, M. Låg, M. Refsnes, E. Dybing, and P. E. Schwarze, “Cytokine release from alveolar macrophages exposed to ambient particulate matter: heterogeneity in relation to size, city an season,” Particle and Fibre Toxicology, vol. 2, article 4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  191. E. Alfaro-Moreno, V. Torres, J. Miranda et al., “Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling,” Environmental Research, vol. 109, no. 5, pp. 528–535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  192. K. L. Oslund, L. A. Miller, J. L. Usachenko, N. K. Tyler, R. Wu, and D. M. Hyde, “Oxidant-injured airway epithelial cells upregulate thioredoxin but do not produce interleukin-8,” American Journal of Respiratory Cell and Molecular Biology, vol. 30, no. 5, pp. 597–604, 2004. View at Publisher · View at Google Scholar · View at Scopus
  193. J. Øvrevik, M. Refsnes, P. Schwarze, and M. Låg, “The ability of oxidative stress to mimic quartz-induced chemokine responses is lung cell line-dependent,” Toxicology Letters, vol. 181, no. 2, pp. 75–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  194. J. Øvrevik, M. Refsnes, A. I. Totlandsdal, J. A. Holme, P. E. Schwarze, and M. Låg, “TACE/TGF-α/EGFR regulates CXCL8 in bronchial epithelial cells exposed to particulate matter components,” European Respiratory Journal, vol. 38, no. 5, pp. 1189–1199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  195. E. Alfaro-Moreno, R. López-Marure, A. Montiel-Dávalos et al., “E-Selectin expression in human endothelial cells exposed to PM10: the role of endotoxin and insoluble fraction,” Environmental Research, vol. 103, no. 2, pp. 221–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  196. A. Montiel-Dávalos, E. Alfaro-Moreno, and R. López-Marure, “PM2.5 and PM10 induce the expression of adhesion molecules and the adhesion of monocytic cells to human umbilical vein endothelial cells,” Inhalation Toxicology, vol. 19, no. 1, supplement, pp. 91–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  197. A. Montiel-Dávalos, M. D. J. Ibarra-Sánchez, J. L. Ventura-Gallegos, E. Alfaro-Moreno, and R. López-Marure, “Oxidative stress and apoptosis are induced in human endothelial cells exposed to urban particulate matter,” Toxicology in Vitro, vol. 24, no. 1, pp. 135–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  198. A. Montiel-Dávalos, J. L. Ventura-Gallegos, E. Alfaro-Moreno et al., “TiO2 nanoparticles induce dysfunction and activation of human endothelial cells,” Chemical Research in Toxicology, vol. 25, no. 4, pp. 920–930, 2012. View at Publisher · View at Google Scholar · View at Scopus
  199. A. Rosenberger, H. Bickeböller, V. McCormack et al., “Asthma and lung cancer risk: a systematic investigation by the international lung cancer consortium,” Carcinogenesis, vol. 33, no. 3, pp. 587–597, 2012. View at Publisher · View at Google Scholar · View at Scopus
  200. I. M. Adcock, G. Caramori, and P. J. Barnes, “Chronic Obstructive pulmonary disease and lung cancer: new molecular insights,” Respiration, vol. 81, no. 4, pp. 265–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  201. H. Bartsch and J. Nair, “Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair,” Langenbeck's Archives of Surgery, vol. 391, no. 5, pp. 499–510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  202. X. Zhou, X. W. Wang, L. Xu et al., “COOH-terminal domain of p53 modulates p53-mediated transcriptional transactivation, cell growth, and apoptosis,” Cancer Research, vol. 59, no. 4, pp. 843–848, 1999. View at Scopus
  203. E. Alfaro-Moreno, T. S. Nawrot, B. M. Vanaudenaerde et al., “Co-cultures of multiple cell types mimic pulmonary cell communication in response to urban PM10,” European Respiratory Journal, vol. 32, no. 5, pp. 1184–1194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  204. M. D. Ramos-Godínez, B. E. González-Gómez, A. Montiel-Dávalos, R. López-Marure, and E. Alfaro-Moreno, “TiO2 nanoparticles induce endothelial cell activation in a pneumocyte-endothelial co-culture model,” Toxicology in Vitro, vol. 27, no. 2, pp. 774–781, 2012.
  205. S. M. Dubinett, J. M. Lee, S. Sharma, and J. J. Mule, “Chemokines: Can effector cells be redirected to the site of the tumor?” Cancer Journal, vol. 16, no. 4, pp. 325–335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  206. M. D. Meek, “Ah receptor and estrogen receptor-dependent modulation of gene expression by extracts of diesel exhaust particles,” Environmental Research, vol. 79, no. 2, pp. 114–121, 1998. View at Publisher · View at Google Scholar · View at Scopus
  207. K. A. Pacheco, “Epigenetics mediate environment: gene effects on occupational sensitization,” Current Opinion in Allergy and Clinical Immunology, vol. 12, no. 2, pp. 111–118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  208. P. Vineis and K. Husgafvel-Pursiainen, “Air pollution and cancer: biomarker studies in human populations,” Carcinogenesis, vol. 26, no. 11, pp. 1846–1855, 2005. View at Publisher · View at Google Scholar · View at Scopus
  209. P. Møller, J. K. Folkmann, L. Forchhammer et al., “Air pollution, oxidative damage to DNA, and carcinogenesis,” Cancer Letters, vol. 266, no. 1, pp. 84–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  210. J. Zhang, A. J. Ghio, M. Gao, K. Wei, G. D. Rosen, and D. Upadhyay, “Ambient particulate matter induces alveolar epithelial cell cycle arrest: role of G1 cyclins,” FEBS Letters, vol. 581, no. 27, pp. 5315–5320, 2007. View at Publisher · View at Google Scholar · View at Scopus
  211. P. H. Danielsen, S. Loft, A. Kocbach, P. E. Schwarze, and P. Møller, “Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines,” Mutation Research, vol. 674, no. 1-2, pp. 116–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  212. M. M. Hasegawa, Y. Nishi, H. Tsuda, N. Inui, and K. Morimoto, “Effects of diesel exhaust particles on chromosome aberration, sister chromatid exchange and morphological transformation in cultured mammalian cells,” Cancer Letters, vol. 42, no. 1-2, pp. 61–66, 1988. View at Scopus
  213. S. M. Oh, H. R. Kim, Y. J. Park, S. Y. Lee, and K. H. Chung, “Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells),” Mutation Research, vol. 723, no. 2, pp. 142–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  214. O. Sevastyanova, B. Binkova, J. Topinka et al., “In vitro genotoxicity of PAH mixtures and organic extract from urban air particles—part II: human cell lines,” Mutation Research, vol. 620, no. 1-2, pp. 123–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  215. J. Hukkanen, O. Pelkonen, J. Hakkola, and H. Raunio, “Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung,” Critical Reviews in Toxicology, vol. 32, no. 5, pp. 391–411, 2002. View at Scopus
  216. S. Mollerup, G. Berge, R. Bæra et al., “Sex differences in risk of lung cancer: expression of genes in the PAH bioactivation pathway in relation to smoking and bulky DNA adducts,” International Journal of Cancer, vol. 119, no. 4, pp. 741–744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  217. K. Yang, Y. Huang, G. Zhao, Y. Lei, and K. Wang, “Expression of PAH-DNA adducts in lung tissues of Xuanwei female lung cancer patients,” Chinese Journal of Lung Cancer, vol. 13, no. 5, pp. 517–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. E. Gyorffy, L. Anna, Z. Gyori et al., “DNA adducts in tumour, normal peripheral lung and bronchus, and peripheral blood lymphocytes from smoking and non-smoking patients: correlations between tissues and detection by 32P-postlabelling and immunoassay,” Carcinogenesis, vol. 25, no. 7, pp. 1201–1209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  219. J. A. Holme, M. Gorria, V. M. Arlt et al., “Different mechanisms involved in apoptosis following exposure to benzo[a]pyrene in F258 and Hepa1c1c7 cells,” Chemico-Biological Interactions, vol. 167, no. 1, pp. 41–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  220. A. Gábelová, Z. Valovicová, G. Bacová et al., “Sensitivity of different endpoints for in vitro measurement of genotoxicity of extractable organic matter associated with ambient airborne particles (PM10),” Mutation Research, vol. 620, no. 1-2, pp. 103–113, 2007.
  221. M.-X. Ensell, W.-Z. Whong, Z.-C. Heng, J. Nath, and T. Ong, “In vitro and in vivo transformation in rat tracheal epithelial cells exposed to diesel emission particles and related compounds,” Mutation Research, vol. 412, no. 3, pp. 283–291, 1998. View at Publisher · View at Google Scholar · View at Scopus
  222. I. Abbas, G. Garçon, F. Saint-Georges et al., “Polycyclic aromatic hydrocarbons within airborne particulate matter (PM2.5) produced DNA bulky stable adducts in a human lung cell coculture model,” Journal of Applied Toxicology, vol. 33, no. 2, pp. 109–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  223. A. R. Collins and L. R. Ferguson, “DNA repair as a biomarker,” Mutation Research, vol. 736, no. 1-2, pp. 2–4, 2012.
  224. B. Binkova, I. Chvatalova, Z. Lnenickova et al., “PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms,” Mutation Research, vol. 620, no. 1-2, pp. 49–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  225. E. Longhin, E. Pezzolato, P. Mantecca et al., “Season linked responses to fine and quasi-ultrafine Milan PM in cultured cells,” Toxicology in Vitro, vol. 27, pp. 551–559, 2013.
  226. M. Mehta, L.-C. Chen, T. Gordon, W. Rom, and M.-S. Tang, “Particulate matter inhibits DNA repair and enhances mutagenesis,” Mutation Research, vol. 657, no. 2, pp. 116–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  227. J. Pourazar, A. Blomberg, F. J. Kelly et al., “Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium,” Particle and Fibre Toxicology, vol. 5, article 8, 2008. View at Publisher · View at Google Scholar · View at Scopus