About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 281230, 11 pages
http://dx.doi.org/10.1155/2013/281230
Review Article

The Role of Magnetic Nanoparticles in the Localization and Treatment of Breast Cancer

Department of Research Oncology, King’s College London, Guy’s Hospital Campus, Great Maze Pond, London SE1 9RT, UK

Received 1 January 2013; Accepted 17 June 2013

Academic Editor: B. E. Kumara Swamy

Copyright © 2013 M. Ahmed and M. Douek. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Alexiou, R. Jurgons, C. Seliger, and H. Iro, “Medical applications of magnetic nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 9-10, pp. 2762–2768, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Gillis and S. H. Koenig, “Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite,” Magnetic Resonance in Medicine, vol. 5, no. 4, pp. 323–345, 1987. View at Scopus
  3. D. Martin, Magnetism in Solids, The M.I.T Press, Cambridge, Mass, USA, 1967.
  4. M. Colombo, S. Carregal-Romero, M. F. Casula et al., “Biological applications of magnetic nanoparticles,” Chemical Society Reviews, vol. 41, no. 11, pp. 4306–4334, 2012.
  5. M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine, vol. 3, no. 5, pp. 703–717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting,” Advances in Enzyme Regulation, vol. 41, pp. 189–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. R. K. Jain, “Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer,” Nature Reviews Cancer, vol. 8, no. 4, pp. 309–316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Sanvicens and M. P. Marco, “Multifunctional nanoparticles—properties and prospects for their use in human medicine,” Trends in Biotechnology, vol. 26, no. 8, pp. 425–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Oghabian, M. Jeddi-Tehrani, A. Zolfaghari, F. Shamsipour, S. Khoei, and S. Amanpour, “Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 6, pp. 5340–5344, 2011. View at Scopus
  10. T.-J. Chen, T.-H. Cheng, C.-Y. Chen et al., “Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI,” Journal of Biological Inorganic Chemistry, vol. 14, no. 2, pp. 253–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Funovics, B. Kapeller, C. Hoeller et al., “MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents,” Magnetic Resonance Imaging, vol. 22, no. 6, pp. 843–850, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Artemov, N. Mori, B. Okollie, and Z. M. Bhujwalla, “MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles,” Magnetic Resonance in Medicine, vol. 49, no. 3, pp. 403–408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Ma, Y. Nakane, Y. Mori et al., “Multilayered, core/shell nanoprobes based on magnetic ferric oxide particles and quantum dots for multimodality imaging of breast cancer tumors,” Biomaterials, vol. 33, no. 33, pp. 8486–8494, 2012.
  14. E.-K. Lim, H.-O. Kim, E. Jang et al., “Hyaluronan-modified magnetic nanoclusters for detection of CD44-overexpressing breast cancer by MR imaging,” Biomaterials, vol. 32, no. 31, pp. 7941–7950, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Campbell, J. Arora, S. F. Cowell et al., “Quasi-cubic magnetite/silica core-shell nanoparticles as enhanced mri contrast agents for cancer imaging,” PLoS One, vol. 6, no. 7, Article ID e21857, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Prashant, M. Dipak, C.-T. Yang, K.-H. Chuang, D. Jun, and S.-S. Feng, “Superparamagnetic iron oxide—loaded poly (lactic acid)-d-α-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent,” Biomaterials, vol. 31, no. 21, pp. 5588–5597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. K. Jain, S. P. Foy, B. Erokwu, S. Dimitrijevic, C. A. Flask, and V. Labhasetwar, “Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice,” Biomaterials, vol. 30, no. 35, pp. 6748–6756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Yang, X.-H. Peng, Y. A. Wang et al., “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clinical Cancer Research, vol. 15, no. 14, pp. 4722–4732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. T. M. de Rosales, R. Tavaré, A. Glaria, G. Varma, A. Protti, and P. J. Blower, “99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging,” Bioconjugate Chemistry, vol. 22, no. 3, pp. 455–465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. American Cancer Society, Cancer Facts and Figures, American Cancer Society, 2011.
  21. A. Nacev, S. H. Kim, J. Rodriguez-Canales, M. A. Tangrea, B. Shapiro, and M. R. Emmert-Buck, “A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases: a feasibility study using simulations on autopsy specimens,” International Journal of Nanomedicine, vol. 6, pp. 2907–2923, 2011.
  22. P. M. Peiris, R. Toy, E. Doolittle et al., “Imaging metastasis using an integrin-targeting chain-shaped nanoparticle,” ACS Nano, vol. 6, no. 10, pp. 8783–8795, 2012. View at Publisher · View at Google Scholar
  23. F. M. Kievit, Z. R. Stephen, O. Veiseh et al., “Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs,” ACS Nano, vol. 6, no. 3, pp. 2591–2601, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Harada, N. Tanigawa, M. Matsuki, T. Nohara, and I. Narabayashi, “Evaluation of lymph node metastases of breast cancer using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging,” European Journal of Radiology, vol. 63, no. 3, pp. 401–407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Motomura, M. Ishitobi, Y. Komoike et al., “SPIO-enhanced magnetic resonance imaging for the detection of metastases in sentinel nodes localized by computed tomography lymphography in patients with breast cancer,” Annals of Surgical Oncology, vol. 18, no. 12, pp. 3422–3429, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Johnson, S. E. Pinder, and M. Douek, “Deposition of superparamagnetic iron-oxide nanoparticles in axillary sentinel lymph nodes following subcutaneous injection,” Histopathology, vol. 62, no. 3, pp. 481–486, 2013.
  27. K. L. Cooper, S. Harnan, Y. Meng et al., “Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis,” European Journal of Surgical Oncology, vol. 37, no. 3, pp. 187–198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Madru, P. Kjellman, F. Olsson et al., “99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes,” Journal of Nuclear Medicine, vol. 53, no. 3, pp. 459–463, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. T. W. Stadnik, H. Everaert, S. Makkat, R. Sacré, J. Lamote, and C. Bourgain, “Breast imaging. Preoperative breast cancer staging: comparison of USPIO-enhanced MR imaging and 18F-fluorodeoxyglucose (FDC) positron emission tomography (PET) imaging for axillary lymph node staging—initial findings,” European Radiology, vol. 16, no. 10, pp. 2153–2160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. C. A. Michel, T. M. Keller, J. M. Fröhlich et al., “Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement,” Radiology, vol. 225, no. 2, pp. 527–536, 2002. View at Scopus
  31. K. Kimura, N. Tanigawa, M. Matsuki et al., “High-resolution MR lymphography using ultrasmall superparamagnetic iron oxide (USPIO) in the evaluation of axillary lymph nodes in patients with early stage breast cancer: preliminary results,” Breast Cancer, vol. 17, no. 4, pp. 241–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Douek and SentiMAG Trialists Collaborative, SentiMag Multicentre Trial (NIHR) UKCRN ID12178, 2010.
  33. M. A. Swartz, “The physiology of the lymphatic system,” Advanced Drug Delivery Reviews, vol. 50, no. 1-2, pp. 3–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. D. N. Krag, D. L. Weaver, J. C. Alex, and J. T. Fairbank, “Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe,” Surgical Oncology, vol. 2, no. 6, pp. 335–340, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. A. E. Giuliano, D. M. Kirgan, J. M. Guenther, and D. L. Morton, “Lymphatic mapping and sentinel lymphadenectomy for breast cancer,” Annals of Surgery, vol. 220, no. 3, pp. 391–401, 1994. View at Scopus
  36. G. H. Lyman, A. E. Giuliano, M. R. Somerfield et al., “American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer,” Journal of Clinical Oncology, vol. 23, no. 30, pp. 7703–7720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Kim, A. E. Giuliano, and G. H. Lyman, “Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis,” Cancer, vol. 106, no. 1, pp. 4–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Mayes, M. Douek, and Q. Pankhurst, Magnetic Nanoparticles: From Fabrication to Clinical Applications, CRC Press, New York, NY, USA, 2012.
  39. J. Rescigno, J. C. Zampell, and D. Axelrod, “Patterns of axillary surgical care for breast cancer in the era of sentinel lymph node biopsy,” Annals of Surgical Oncology, vol. 16, no. 3, pp. 687–696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. P. L. Leong, Z.-Z. Shen, T.-J. Liu et al., “Is breast cancer the same disease in Asian and Western countries?” World Journal of Surgery, vol. 34, no. 10, pp. 2308–2324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. E. Harnan, K. L. Cooper, Y. Meng et al., “Magnetic resonance for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis,” European Journal of Surgical Oncology, vol. 37, no. 11, pp. 928–936, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Z. Wang, F. X. Gu, and O. C. Farokhzad, “Nanoparticles for cancer diagnosis and therapy,” in Safety of Nanoparticles: From Manufacturing to Medical Applications, Springer, New York, NY, USA, 2009.
  43. P. Reimer and T. Balzer, “Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications,” European Radiology, vol. 13, no. 6, pp. 1266–1276, 2003. View at Scopus
  44. T. Joshi, Q. A. Pankhurst, S. Hattersley et al., “Magnetic nanoparticles for detecting cancer spread,” in Proceedings of the 30th Annual San Antonio Breast Cancer Symposium, vol. 106, p. S129, Breast Cancer Research and Treatment, December 2007.
  45. Y. Minamiya, M. Ito, Y. Katayose et al., “Intraoperative sentinel lymph node mapping using a new sterilizable magnetometer in patients with nonsmall cell lung cancer,” The Annals of Thoracic Surgery, vol. 81, no. 1, pp. 327–330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Nakagawa, Y. Minamiya, Y. Katayose et al., “A novel method for sentinel lymph node mapping using magnetite in patients with non-small cell lung cancer,” Journal of Thoracic and Cardiovascular Surgery, vol. 126, no. 2, pp. 563–567, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. B. ten Haken, M. Visscher, J. J. Pouw et al., “Magnetic detection of the sentinel lymph node in ex vivo tissue with colorectal cancer,” in Proceedings of the 17th International Conference on Biomagnetism Advances in Biomagnetism (Biomag '10), pp. 447–449, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Douek and SentiMAG Trialists Collaborative, MelaMag Multicentre Tial (NIHR) UKCRN ID14011, 2013.
  49. T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, “Iron oxide nanoparticles for sustained delivery of anticancer agents,” Molecular Pharmaceutics, vol. 2, no. 3, pp. 194–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Kohler, C. Sun, J. Wang, and M. Zhang, “Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells,” Langmuir, vol. 21, no. 19, pp. 8858–8864, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Munnier, S. Cohen-Jonathan, C. Linassier et al., “Novel method of doxorubicin-SPION reversible association for magnetic drug targeting,” International Journal of Pharmaceutics, vol. 363, no. 1-2, pp. 170–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Benyettou, Y. Lalatonne, O. Sainte-Catherine, M. Monteil, and L. Motte, “Superparamagnetic nanovector with anti-cancer properties: γFe2O3@Zoledronate,” International Journal of Pharmaceutics, vol. 379, no. 2, pp. 324–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. M. Yallapu, S. P. Foy, T. K. Jain, and V. Labhasetwar, “PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications,” Pharmaceutical Research, vol. 27, no. 11, pp. 2283–2295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Gautier, E. Munnier, A. Paillard et al., “A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting,” International Journal of Pharmaceutics, vol. 423, no. 1, pp. 16–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. Q. Tong, H. Li, W. Li et al., “In vitro and in vivo anti-tumor effects of gemcitabine loaded with a new drug delivery system,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 4, pp. 3651–3658, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Hayashi, K. Ono, H. Suzuki et al., “High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect,” ACS Applied Materials and Interfaces, vol. 2, no. 7, pp. 1903–1911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Biswas, L. E. Gordon, G. J. Clark, and M. H. Nantz, “Click assembly of magnetic nanovectors for gene delivery,” Biomaterials, vol. 32, no. 10, pp. 2683–2688, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Kumar, M. Yigit, G. Dai, A. Moore, and Z. Medarova, “Image-guided breast tumor therapy using a small interfering RNA nanodrug,” Cancer Research, vol. 70, no. 19, pp. 7553–7561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. O. Veiseh, J. W. Gunn, F. M. Kievit et al., “Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles,” Small, vol. 5, no. 2, pp. 256–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. J. D. Gibson, B. P. Khanal, and E. R. Zubarev, “Paclitaxel-functionalized gold nanoparticles,” Journal of the American Chemical Society, vol. 129, no. 37, pp. 11653–11661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Hong, G. Han, J. M. Fernández, B.-J. Kim, N. S. Forbes, and V. M. Rotello, “Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers,” Journal of the American Chemical Society, vol. 128, no. 4, pp. 1078–1079, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Kumar, N. Saini, N. Jain, R. Sareen, and V. Pandit, “Gold nanoparticles: an era in bionanotechnology,” Expert Opinion on Drug Delivery, vol. 10, no. 3, pp. 397–409, 2013.
  63. M. A. Polizzi, N. A. Stasko, and M. H. Schoenfisch, “Water-soluble nitric oxide-releasing gold nanoparticles,” Langmuir, vol. 23, no. 9, pp. 4938–4943, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, and D. A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’,” Photochemical and Photobiological Sciences, vol. 5, no. 8, pp. 727–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. G. K. Darbha, A. K. Singh, U. S. Rai, E. Yu, H. Yu, and P. Chandra Ray, “Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles,” Journal of the American Chemical Society, vol. 130, no. 25, pp. 8038–8043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. R.-Q. Liang, C.-Y. Tan, and K.-C. Ruan, “Colorimetric detection of protein microarrays based on nanogold probe coupled with silver enhancement,” Journal of Immunological Methods, vol. 285, no. 2, pp. 157–163, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. H. L. Rodríguez-Luccioni, M. Latorre-Esteves, J. Méndez-Vega et al., “Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles,” International Journal of Nanomedicine, vol. 6, pp. 373–380, 2011. View at Scopus
  69. T. Kikumori, T. Kobayashi, M. Sawaki, and T. Imai, “Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes,” Breast Cancer Research and Treatment, vol. 113, no. 3, pp. 435–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. I. Hilger, R. Hiergeist, R. Hergt, K. Winnefeld, H. Schubert, and W. A. Kaiser, “Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study,” Investigative Radiology, vol. 37, no. 10, pp. 580–586, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Ito, Y. Kuga, H. Honda et al., “Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia,” Cancer Letters, vol. 212, no. 2, pp. 167–175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. S. J. DeNardo, G. L. DeNardo, A. Natarajan et al., “Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF—induced thermoablative therapy for human breast cancer in mice,” Journal of Nuclear Medicine, vol. 48, no. 3, pp. 437–444, 2007. View at Scopus