About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 281392, 6 pages
http://dx.doi.org/10.1155/2013/281392
Research Article

Pharmacokinetics and Bioequivalence Evaluation of Cyclobenzaprine Tablets

Faculty of Pharmaceutical Sciences, University of São Paulo, 580 Avenida Prof. Lineu Prestes, 05508900 São Paulo, SP, Brazil

Received 30 April 2013; Accepted 3 July 2013

Academic Editor: Sami M. Nazzal

Copyright © 2013 Tatiane Maria de Lima Souza Brioschi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Chou, K. Peterson, and M. Helfand, “Comparative efficacy and safety of skeletal muscle relaxants for spasticity and musculoskeletal conditions: a systematic review,” Journal of Pain and Symptom Management, vol. 28, no. 2, pp. 140–175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. P. P. Toth and J. Urtis, “Commonly used muscle relaxant therapies for acute low back pain: a review of carisoprodol, cyclobenzaprine hydrochloride, and metaxalone,” Clinical Therapeutics, vol. 26, no. 9, pp. 1355–1367, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. W. A. Katz and J. Dube, “Cyclobenzaprine in the treatment of acute muscle spasm: review of a decade of clinical experience,” Clinical Therapeutics, vol. 10, no. 2, pp. 216–228, 1988. View at Scopus
  4. N. N. Share and C. S. McFarlane, “Cyclobenzaprine: a novel centrally acting skeletal muscle relaxant,” Neuropharmacology, vol. 14, no. 9, pp. 675–684, 1975. View at Scopus
  5. W. J. Sullivan, A. Panagos, P. M. Foye, A. W. Sable, R. W. Irwin, and J. P. Zuhosky, “Industrial medicine and acute musculoskeletal rehabilitation. 2. Medications for the treatment of acute musculoskeletal pain,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 3, supplement 1, pp. S10–S13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. See and R. Ginzburg, “Skeletal muscle relaxants,” Pharmacotherapy, vol. 28, no. 2, pp. 207–213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. W. Van Tulder, T. Touray, A. D. Furlan, S. Solway, and L. M. Bouter, “Muscle relaxants for nonspecific low back pain: a systematic review within the framework of the Cochrane Collaboration,” Spine, vol. 28, no. 17, pp. 1978–1992, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. L. Goldenberg, “Pharmacological treatment of fibromyalgia and other chronic musculoskeletal pain,” Best Practice and Research. Clinical Rheumatology, vol. 21, no. 3, pp. 499–511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. E. Till, M. L. Constanzer, J. Demetriades, J. D. Irvin, R. B. Lee, and R. K. Ferguson, “Evidence for route dependent biotransformation of cyclobenzaprine hydrochloride,” Biopharmaceutics and Drug Disposition, vol. 3, no. 1, pp. 19–28, 1982. View at Scopus
  10. H. B. Hucker, S. C. Stauffer, K. S. Albert, and B. W. Lei, “Plasma levels and bioavilability of cyclobenzaprine in human subjects,” Journal of Clinical Pharmacology, vol. 17, no. 11-12, pp. 719–727, 1977. View at Scopus
  11. G. A. Winchell, J. D. King, C. M. Chavez-Eng, M. L. Constanzer, and S. H. Korn, “Cyclobenzaprine pharmacokinetics, including the effects of age, gender, and hepatic insufficiency,” Journal of Clinical Pharmacology, vol. 42, no. 1, pp. 61–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H. B. Hucker, S. C. Stauffer, A. J. Balletto, S. D. White, A. G. Zacchei, and B. H. Arison, “Physiological disposition and metabolism of cyclobenzaprine in the rat, dog, rhesus monkey, and man,” Drug Metabolism and Disposition, vol. 6, no. 6, pp. 659–672, 1978. View at Scopus
  13. R. W. Wang, L. Liu, and H. Cheng, “Identification of human liver cytochrome P450 isoforms involved in the in vitro metabolism of cyclobenzaprine,” Drug Metabolism and Disposition, vol. 24, no. 7, pp. 786–791, 1996. View at Scopus
  14. M. Darwish, E. T. Hellriegel, and F. Xie, “Single-dose pharmacokinetics of once-daily cyclobenzaprine extended release 30 mg versus cyclobenzaprine immediate release 10 mg three times daily in healthy young adults: a randomized, open-label, two-period crossover, single-centre study,” Clinical Drug Investigation, vol. 28, no. 12, pp. 793–801, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Darwish and F. Xie, “Effect of food on the pharmacokinetics of once-daily cyclobenzaprine extended-release 30 mg: a randomized, open-label, crossover, single-centre study,” Clinical Drug Investigation, vol. 29, no. 3, pp. 145–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Darwish, S. Chang, and E. T. Hellriegel, “A pharmacokinetic comparison of single doses of once-daily cyclobenzaprine extended-release 15 mg and 30 mg: a randomized, double-blind, two-period crossover study in healthy volunteers,” Clinical Therapeutics, vol. 31, no. 1, pp. 108–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Darwish and E. T. Hellriegel, “Steady-state pharmacokinetics of once-daily cyclobenzaprine extended release: a randomized, double-blind, 2-Period Crossover Study in healthy volunteers,” Clinical Therapeutics, vol. 33, no. 6, pp. 746–753, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. C. Chow and J. P. Liu, Design and Analysis of Bioavailability and Bioequivalence Studies, chapter 1, Marcel Dekker, New York, NY, USA, 2000.
  19. H. M. Abdou, Dissolution, Bioavailability and Bioequivalence, Bioequivalence—General Definitions, chapter 26, Mack Printing Company, Easton, Pa, USA, 1989.
  20. D. B. Faber, “Separation of cyclobenzaprine from biological samples and its determination by thin-layer chromatography followed by densitometry,” Journal of Chromatography, vol. 74, no. 1, pp. 85–98, 1972. View at Scopus
  21. H. B. Hucker and S. C. Stauffer, “GLC determination of cyclobenzaprine in plasma and urine,” Journal of Pharmaceutical Sciences, vol. 65, no. 8, pp. 1253–1255, 1976. View at Scopus
  22. M. L. Constanzer, W. C. Vincek, and W. F. Bayne, “Determination of cyclobenzaprine in plasma and urine using capillary gas chromatography with nitrogen-selective detection,” Journal of Chromatography, vol. 339, no. 2, pp. 414–418, 1985. View at Scopus
  23. M. Constanzer, C. Chavez, and B. Matuszewski, “Development and comparison of high-performance liquid chromatographic methods with tandem mass spectrometric and ultraviolet absorbance detection for the determination of cyclobenzaprine in human plasma and urine,” Journal of Chromatography. B, Biomedical Applications, vol. 666, no. 1, pp. 117–126, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. P. T. R. Hwang, D. A. Young, A. B. Straughn, and M. C. Meyer, “Quantitative determination of cyclobenzaprine in human plasma by high pressure liquid chromatography,” Journal of Liquid Chromatography, vol. 16, no. 5, pp. 1163–1171, 1993. View at Scopus
  25. R. Causon, “Validation of chromatographic methods in biomedical analysis. Viewpoint and discussion,” Journal of Chromatography. B, Biomedical Sciences and Applications, vol. 689, no. 1, pp. 175–180, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Bressolle, M. Bromet-Petit, and M. Audran, “Validation of liquid chromatographic and gas chromatographic methods. Applications to pharmacokinetics,” Journal of Chromatography. B, Biomedical Sciences and Applications, vol. 686, no. 1, pp. 3–10, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Braggio, R. J. Barnaby, P. Grossi, and M. Cugola, “A strategy for validation of bioanalytical methods,” Journal of Pharmaceutical and Biomedical Analysis, vol. 14, no. 4, pp. 375–388, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Shargel, S. Wu-Pong, and A. B. C. Yu, Applied Biopharmaceutics and Pharmacokinetics, McGraw-Hill, New York, NY, USA, 6th edition, 2012.
  29. S. Vergne, K. Titier, V. Bernard et al., “Bioavailability and urinary excretion of isoflavones in humans: effects of soy-based supplements formulation and equol production,” Journal of Pharmaceutical and Biomedical Analysis, vol. 43, no. 4, pp. 1488–1494, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Macheras and P. Argyrakis, “Gastrointestinal drug absorption: is it time to consider heterogeneity as well as homogeneity?” Pharmaceutical Research, vol. 14, no. 7, pp. 842–847, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison, “A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability,” Pharmaceutical Research, vol. 12, no. 3, pp. 413–420, 1995. View at Scopus
  32. L. X. Yu, G. L. Amidon, J. E. Polli et al., “Biopharmaceutics classification system: the scientific basis for biowaiver extensions,” Pharmaceutical Research, vol. 19, no. 7, pp. 921–925, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. G. M. Zentner, G. S. Rork, and K. J. Himmelstein, “The controlled porosity osmotic pump,” Journal of Controlled Release, vol. 1, no. 4, pp. 269–282, 1985. View at Scopus