About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 282757, 14 pages
http://dx.doi.org/10.1155/2013/282757
Review Article

Electrogastrography in Adults and Children: The Strength, Pitfalls, and Clinical Significance of the Cutaneous Recording of the Gastric Electrical Activity

1Laboratory of Nutritional Pathophysiology, I.R.C.C.S. “Saverio de Bellis”, Via Turi 27, I-70013 Castellana Grotte (BA), Italy
2Department of Pediatrics, University of Bari, Policlinico, Piazza Giulio Cesare, I-70124 Bari, Italy

Received 4 April 2013; Accepted 13 May 2013

Academic Editor: Miyako Takaki

Copyright © 2013 Giuseppe Riezzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Szurszewski, “Electrical basis for gastrointestinal motility,” in Physiology of the Gastrointestinal Tract, L. R. Johnson, Ed., pp. 383–423, Raven Press, New York, NY, USA, 1987.
  2. J. Tack, “Gastric motor and sensory function,” Current Opinion in Gastroenterology, vol. 25, no. 6, pp. 557–565, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. D. F. van Helden, D. R. Laver, J. Holdsworth, and M. S. Imtiaz, “Generation and propagation of gastric slow waves,” Clinical and Experimental Pharmacology and Physiology, vol. 37, no. 4, pp. 516–524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Zhang and J. D. Z. Chen, “Pacing the gut in motility disorders,” Current Treatment Options in Gastroenterology, vol. 9, no. 4, pp. 351–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Kito and H. Suzuki, “Electrophysiological properties of gastric pacemaker potentials,” Journal of Smooth Muscle Research, vol. 39, no. 5, pp. 163–173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. P. L. Rhee, J. Y. Lee, H. J. Son, et al., “Analysis of pacemaker activity in the human stomach,” Journal of Physiology, vol. 589, part 24, pp. 6105–6118, 2011.
  7. T. Ördög, S. M. Ward, and K. M. Sanders, “Interstitial cells of Cajal generate electrical slow waves in the murine stomach,” Journal of Physiology, vol. 518, no. 1, pp. 257–269, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. H. T. Lee, G. W. Hennig, N. W. Fleming et al., “Septal interstitial cells of cajal conduct pacemaker activity to excite muscle bundles in human jejunum,” Gastroenterology, vol. 133, no. 3, pp. 907–917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. M. Cousins, F. R. Edwards, H. Hickey, C. E. Hill, and G. D. S. Hirst, “Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum,” Journal of Physiology, vol. 550, no. 3, pp. 829–844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. K. M. Sanders, S. D. Koh, S. Ro, and S. M. Ward, “Regulation of gastrointestinal motility-insights from smooth muscle biology,” National Review of Gastroenterology and Hepatology, vol. 9, no. 11, pp. 633–645, 2012.
  11. M. H. Zhu, T. W. Kim, S. Ro et al., “A Ca2+-activated Cl- conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity,” Journal of Physiology, vol. 587, no. 20, pp. 4905–4918, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Suzuki, Y. Kito, H. Hashitani, and E. Nakamura, “Factors modifying the frequency of spontaneous activity in gastric muscle,” Journal of Physiology, vol. 576, no. 3, pp. 667–674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Berridge, “Smooth muscle cell calcium activation mechanisms,” Journal of Physiology, vol. 586, pp. 5047–5061, 2008.
  14. D. S. Smith, C. S. Williams, and C. D. Ferris, “Diagnosis and treatment of chronic gastroparesis and chronic intestinal pseudo-obstruction,” Gastroenterology Clinics of North America, vol. 32, no. 2, pp. 619–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. W. C. Alvarez, “The electrogastrogram and what it shows,” The Journal of the American Medical Association, vol. 78, pp. 1116–1119, 1922.
  16. R. C. Davis, L. Garafolo, and F. P. Gault, “An exploration of abdominal potentials,” Journal of Comparative and Physiological Psychology, vol. 50, no. 5, pp. 519–523, 1957. View at Publisher · View at Google Scholar · View at Scopus
  17. B. H. Brown, R. H. Smallwood, H. L. Duthie, and C. J. Stoddard, “Intestinal smooth muscle electrical potentials recorded from surface electrodes,” Medical and Biological Engineering, vol. 13, no. 1, pp. 97–103, 1975. View at Scopus
  18. K. Jonderko, A. Kasicka-Jonderko, and B. Błońska-Fajfrowska, “Does body posture affect the parameters of a cutaneous electrogastrogram?” Journal of Smooth Muscle Research, vol. 41, no. 3, pp. 133–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Kasicka-Jonderko, K. Jonderko, B. Krusiec-Świdergoł, I. Obrok, and B. Błońska-Fajfrowska, “Comparison of multichannel electrogastrograms obtained with the use of three different electrode types,” Journal of Smooth Muscle Research, vol. 42, no. 2-3, pp. 89–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. P. M. Smout, H. J. A. Jebbink, and M. Samson, “Acquisition and analysis of electrogastrographic data. The dutch experience,” in Electrogastrography: Principles and Applications, J. Z. Chen and R. W. McCallum, Eds., pp. 3–30, Raven Press, New York, NY, USA, 1994.
  21. M. P. Mintchev, Y. J. Kingma, and K. L. Bowes, “Accuracy of cutaneous recordings of gastric electrical activity,” Gastroenterology, vol. 104, no. 5, pp. 1273–1280, 1993. View at Scopus
  22. M. Patterson, R. Rintala, D. Lloyd, L. Abernethy, D. Houghton, and J. Williams, “Validation of electrode placement in neonatal electrogastrography,” Digestive Diseases and Sciences, vol. 46, no. 10, pp. 2245–2249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. K. L. Koch and R. M. Stern, Handbook of Electrogastrography, Oxford University Press, New York, NY, USA, 2004.
  24. N. Mirizzi and U. Scafoglieri, “Optimal direction of the electrogastrographic signal in man,” Medical and Biological Engineering and Computing, vol. 21, no. 4, pp. 385–389, 1983. View at Scopus
  25. J. D. Z. Chen, X. Zou, X. Lin, S. Ouyang, and J. Liang, “Detection of gastric slow wave propagation from the cutaneous electrogastrogram,” The American Journal of Physiology, vol. 277, no. 2, pp. G424–G430, 1999. View at Scopus
  26. J. D. Z. Chen, E. Co, J. Liang et al., “Patterns of gastric myoelectrical activity in human subjects of different ages,” The American Journal of Physiology, vol. 272, no. 5, pp. G1022–G1027, 1997. View at Scopus
  27. D. Levanon, M. Zhang, and J. D. Z. Chen, “Efficiency and efficacy of the electrogastrogram,” Digestive Diseases and Sciences, vol. 43, no. 5, pp. 1023–1030, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Kaiho, I. Shimoyama, Y. Nakajima, and T. Ochiai, “Gastric and non-gastric signals in electrogastrography,” Journal of the Autonomic Nervous System, vol. 79, no. 1, pp. 60–66, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Riezzo, F. Pezzolla, J. Thouvenot, and I. Giorgio, “Reproducibility of cutaneous electrogastrography in the fasting state in man,” Pathologie Biologie, vol. 40, no. 9, pp. 889–894, 1992. View at Scopus
  30. K. L. Koch, S. P. Hong, and L. Xu, “Reproducibility of gastric myoelectrical activity and the water load test in patients with dysmotility-like dyspepsia symptoms and in control subjects,” Journal of Clinical Gastroenterology, vol. 31, no. 2, pp. 125–129, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Cheung and P. Vaitkus, “Perspectives of electrogastrography and motion sickness,” Brain Research Bulletin, vol. 47, no. 5, pp. 421–431, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. J. K. DiBaise, F. L. Park, E. Lyden, R. E. Brand, and R. M. Brand, “Effects of low doses of erythromycin on the 13C Spirulina platensis gastric emptying breath test and electrogastrogram: a controlled study in healthy volunteers,” The American Journal of Gastroenterology, vol. 96, no. 7, pp. 2041–2050, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Liang, Z. Lin, and R. W. McCallum, “Artifact reduction in electrogastrogram based on empirical mode decomposition method,” Medical and Biological Engineering and Computing, vol. 38, no. 1, pp. 35–41, 2000. View at Scopus
  34. D. W. Kim, C. Y. Ryu, and S. I. Lee, “Usefulness of a developed four-channel EGG system with running spectrum analysis,” Yonsei Medical Journal, vol. 41, no. 2, pp. 230–236, 2000. View at Scopus
  35. B. Krusiec-Świdergoł and K. Jonderko, “Multichannel electrogastrography under a magnifying glass - An in-depth study on reproducibility of fed state electrogastrograms,” Neurogastroenterology and Motility, vol. 20, no. 6, pp. 625–634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Liang, “Extraction of gastric slow waves from electrogastrograms: combining independent component analysis and adaptive signal enhancement,” Medical and Biological Engineering and Computing, vol. 43, no. 2, pp. 245–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Chen, J. Vandewalle, W. Sansen, G. Vantrappen, and J. Janssens, “Adaptive method for cancellation of respiratory artefact in electrogastric measurements,” Medical and Biological Engineering and Computing, vol. 27, no. 1, pp. 57–63, 1989. View at Scopus
  38. C. P. Sanmiguel, M. P. Mintchev, and K. L. Bowes, “Electrogastrography: a noninvasive technique to evaluate gastric electrical activity,” Canadian Journal of Gastroenterology, vol. 12, no. 6, pp. 423–430, 1998. View at Scopus
  39. M. I. Oppenheim and D. F. Sittig, “An innovative dicrotic notch detection algorithm which combines rule-based logic with digital signal processing techniques,” Computers and Biomedical Research, vol. 28, no. 2, pp. 154–170, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. K. L. Koch and R. M. Stern, “Electrogastrographic data acquisition and analysis. The Penn State experience,” in Electrogastrography: Principles and Applications, J. Z. Chen and R. W. McCallum, Eds., pp. 31–44, Raven Press, New York, NY, USA, 1994.
  41. T. L. Abell and J. R. Malagelada, “Electrogastrography: current assessment and future perspectives,” Digestive Diseases and Sciences, vol. 33, no. 8, pp. 982–992, 1988. View at Scopus
  42. E. J. van der Schee, A. J. P. M. Smout, and J. L. Grashuis, “Application of running spectrum analysis to electrogastrographic signals recorded from dog and man,” in Motility of the Digestive Tract, M. Wienbeck, Ed., pp. 241–250, Raven press, New York, NY, USA, 1982.
  43. M. A. M. T. Verhagen, L. J. Van Schelven, M. Samsom, and A. J. P. M. Smout, “Pitfalls in the analysis of electrogastrographic recordings,” Gastroenterology, vol. 117, no. 2, pp. 453–460, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Liang, J. Y. Cheung, and J. D. Z. Chen, “Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks,” Annals of Biomedical Engineering, vol. 25, no. 5, pp. 850–857, 1997. View at Scopus
  45. J. Z. Chen and R. W. McCallum, “Electrogastrographic parameters and their clinical significance,” in Electrogastrography: Principles and Applications, J. Z. Chen and R. W. McCallum, Eds., pp. 45–73, Raven Press, New York, NY, USA, 1994.
  46. M. Mintchev and K. L. Bowes, “Capabilities and limitations of electrogastrograms,” in Electrogastrography: Principles and Applications, J. Z. Chen and R. W. McCallum, Eds., pp. 145–169, Raven Press, New York, NY, USA, 1994.
  47. J. Chen and R. W. McCallum, “Gastric slow wave abnormalities in patients with gastroparesis,” The American Journal of Gastroenterology, vol. 87, no. 4, pp. 477–482, 1992. View at Scopus
  48. G. Riezzo, F. Pezzolla, G. Darconza, and I. Giorgio, “Gastric myoelectrical activity in the first trimester of pregnancy: a cutaneous electrogastrographic study,” The American Journal of Gastroenterology, vol. 87, no. 6, pp. 702–707, 1992. View at Scopus
  49. A. J. P. M. Smout, E. J. van der Schee, and J. L. Grashuis, “What is measured in electrogastrography?” Digestive Diseases and Sciences, vol. 25, no. 3, pp. 179–187, 1980. View at Scopus
  50. J. W. Hamilton, B. E. Bellahsene, M. Reichelderfer, J. G. Webster, and P. Bass, “Human electrogastrograms: comparison of surface and mucosal recordings,” Digestive Diseases and Sciences, vol. 31, no. 1, pp. 33–39, 1986. View at Scopus
  51. F. Pezzolla, G. Riezzo, M. A. Maselli, and I. Giorgio, “Electrical activity recorded from abdominal surface after gastrectomy or colectomy in humans,” Gastroenterology, vol. 97, no. 2, pp. 313–320, 1989. View at Scopus
  52. B. O. Familoni, Y. J. Kingma, and K. L. Bowes, “Study of transcutaneous and intraluminal measurement of gastric electrical activity in humans,” Medical and Biological Engineering and Computing, vol. 25, no. 4, pp. 397–402, 1987. View at Scopus
  53. J. Chen and R. W. McCallum, “Response of the electric activity in the human stomach to water and a solid meal,” Medical and Biological Engineering and Computing, vol. 29, no. 4, pp. 351–357, 1991. View at Scopus
  54. M. P. Mintchev and K. L. Bowes, “Computer simulation of the impact of different dimensions of the stomach on the validity of electrogastrograms,” Medical and Biological Engineering and Computing, vol. 36, no. 1, pp. 7–10, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. B. O. Familoni, T. L. Abell, and K. L. Bowes, “A model of gastric electrical activity in health and disease,” IEEE Transactions on Biomedical Engineering, vol. 42, no. 7, pp. 647–657, 1995. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Liang and J. D. Z. Chen, “What can be measured from surface electrogastrography: computer simulations,” Digestive Diseases and Sciences, vol. 42, no. 7, pp. 1331–1343, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Lindberg, M. Iwarzon, and B. Hammarlund, “24-Hour ambulatory electrogastrography in healthy volunteers,” Scandinavian Journal of Gastroenterology, vol. 31, no. 7, pp. 658–664, 1996. View at Scopus
  58. C. Shimamoto, I. Hirata, Y. Hiraike, N. Takeuchi, T. Nomura, and K. I. Katsu, “Evaluation of gastric motor activity in the elderly by electrogastrography and the 13C-acetate breath test,” Gerontology, vol. 48, no. 6, pp. 381–386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. H. P. Simonian, K. Panganamamula, H. P. Parkman et al., “Multichannel electrogastrography (EGG) in normal subjects: a multicenter study,” Digestive Diseases and Sciences, vol. 49, no. 4, pp. 594–601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Riezzo, M. Chiloiro, and V. Guerra, “Electrogastrography in healthy children: evaluation of normal values, influence of age, gender, and obesity,” Digestive Diseases and Sciences, vol. 43, no. 8, pp. 1646–1651, 1998. View at Scopus
  61. D. Levanon, M. Zhang, W. C. Orr, and J. D. Z. Chen, “Effects of meal volume and composition on gastric myoelectrical activity,” The American Journal of Physiology, vol. 274, no. 2, pp. G430–G434, 1998. View at Scopus
  62. Y. Shimada, M. Watanabe, N. Shibahara, T. Kita, T. Itoh, and K. Terasawa, “Electrogastrographic power ratio in humans is not related to changes in antrum-skin distance but to antral motility,” Journal of Gastroenterology, vol. 33, no. 3, pp. 310–317, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Gonlachanvit, W. D. Chey, K. J. Goodman, and H. P. Parkman, “Effect of meal size and test duration on gastric emptying and gastric myoelectrical activity as determined with simultaneous [13C] octanoate breath test and electrogastrography in normal subjects using a muffin meal,” Digestive Diseases and Sciences, vol. 46, no. 12, pp. 2643–2650, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. J. D. Z. Chen, K. Davenport, and R. W. McCallum, “Effect of fat preload on gastric myoelectrical activity in normal humans,” Journal of Gastrointestinal Motility, vol. 5, no. 4, pp. 281–287, 1993. View at Scopus
  65. D. Syrkiewicz-Trepiak, K. Jonderko, and A. Kasicka-Jonderko, “Effect of the osmolality of caloric and acaloric liquids on gastric myoelectrical activity in humans,” Medical Science Monitor, vol. 16, no. 5, pp. CR252–CR259, 2010. View at Scopus
  66. Y. Shimoyama, M. Kusano, O. Kawamura et al., “High-viscosity liquid meal accelerates gastric emptying,” Neurogastroenterology and Motility, vol. 19, no. 11, pp. 879–886, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. M. A. van Nieuwenhoven, E. M. R. Kovacs, R. J. M. Brummer, M. S. Westerterp-Plantenga, and F. Brouns, “The effect of different dosages of guar gum on gastric emptying and small intestinal transit of a consumed semisolid meal,” Journal of the American College of Nutrition, vol. 20, no. 1, pp. 87–91, 2001. View at Scopus
  68. X. Xu, D. Brining, A. Rafiq, J. Hayes, J. D. Z. Chen, and J. Chen, “Effects of enhanced viscosity on canine gastric and intestinal motility,” Journal of Gastroenterology and Hepatology, vol. 20, no. 3, pp. 387–394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. K. L. Koch, W. R. Stewart, and R. M. Stern, “Effect of barium meals on gastric electromechanical activity in man: a fluoroscopic-electrogastrographic study,” Digestive Diseases and Sciences, vol. 32, no. 11, pp. 1217–1222, 1987. View at Scopus
  70. B. Pfaffenbach, B. Wedmann, R. J. Adamek, and M. Wegener, “The significance of electrogastrographically determined amplitudes - Is there a correlation to sonographically measured antral mechanical contractions?” Zeitschrift fur Gastroenterologie, vol. 33, no. 2, pp. 103–107, 1995. View at Scopus
  71. S. Abid and G. Lindberg, “Electrogastrography: poor correlation with antro-duodenal manometry and doubtful clinical usefulness in adults,” World Journal of Gastroenterology, vol. 13, no. 38, pp. 5101–5107, 2007. View at Scopus
  72. W. Sha, P. J. Pasricha, and J. D. Chen, “Correlations among electrogastrogram, gastric dysmotility, and duodenal dysmotility in patients with functional dyspepsia,” Journal of Clinical Gastroenterology, vol. 43, no. 8, pp. 716–722, 2009. View at Scopus
  73. K. L. Koch, R. M. Stern, W. R. Stewart, and M. W. Vasey, “Gastric emptying and gastric myoelectrical activity in patients with diabetic gastroparesis: effect of long-term domperidone treatment,” The American Journal of Gastroenterology, vol. 84, no. 9, pp. 1069–1075, 1989. View at Scopus
  74. T. L. Abell, Camilleri M;, V. S. Hench, and J. R. Malagelada, “Gastric electromechanical function and gastric emptying in diabetic gastroparesis,” European Journal of Gastroenterology and Hepatology, vol. 3, no. 2, pp. 163–167, 1991. View at Scopus
  75. S. B. des Varannes, M. Mizrahi, and A. Dubois, “Relation between postprandial gastric emptying and cutaneous electrogastrogram in primates,” The American Journal of Physiology, vol. 261, no. 2, pp. G248–G255, 1991. View at Scopus
  76. M. Chiloiro, G. Riezzo, V. Guerra, N. S. Reddy, and I. Giorgio, “The cutaneous electrogastrogram reflects postprandial gastric emptying in man,” in Electrogastrography: Principles and Applications, J. Z. Chen and R. W. McCallum, Eds., pp. 293–306, Raven Press, New York, NY, USA, 1994.
  77. H. P. Parkman, M. A. Miller, D. Trate et al., “Electrogastrography and gastric emptying scintigraphy are complementary for assessment of dyspepsia,” Journal of Clinical Gastroenterology, vol. 24, no. 4, pp. 214–219, 1997. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Pfaffenbach, R. J. Adamek, C. Bartholomäus, and M. Wegener, “Gastric dysrhythmias and delayed gastric emptying in patients with functional dyspepsia,” Digestive Diseases and Sciences, vol. 42, no. 10, pp. 2094–2099, 1997. View at Scopus
  79. Z. Lin, E. Y. Eaker, I. Sarosiek, and R. W. McCallum, “Gastric myoelectrical activity and gastric emptying in patients with functional dyspepsia,” The American Journal of Gastroenterology, vol. 94, no. 9, pp. 2384–2389, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. J. D. Z. Chen, Z. Lin, J. Pan, and R. W. Mccallum, “Abnormal gastric myoelectrical activity and delayed gastric emptying in patients with symptoms suggestive of gastroparesis,” Digestive Diseases and Sciences, vol. 41, no. 8, pp. 1538–1545, 1996. View at Scopus
  81. H. Geldof, E. J. van der Schee, M. van Blankenstein, and J. L. Grashuis, “Electrogastrographic study of gastric myoelectrical activity in patients with unexplained nausea and vomiting,” Gut, vol. 27, no. 7, pp. 799–808, 1986. View at Scopus
  82. H. Zhang, X. Xu, Z. Wang, C. Li, and M. Ke, “Correlation between gastric myoelectrical activity recorded by multi-channel electrogastrography and gastric emptying in patients with functional dyspepsia,” Scandinavian Journal of Gastroenterology, vol. 41, no. 7, pp. 797–804, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. S. B. Yoon, M. G. Choi, C. H. Lim et al., et al., “The effect of exenatide and erythromycin on postprandial symptoms and their relation to gastric functions,” Digestion, vol. 85, no. 3, pp. 211–218, 2012.
  84. J. J. Gallican and S. Vanner, “Basic and clinical pharmacology of new motility promoting agents,” Neurogastroenterology and Motility, vol. 17, no. 5, pp. 643–653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Kamiya, T. Nagao, T. Andou et al., “Effects of trimebutine maleate on gastric motility in patients with gastric ulcer,” Journal of Gastroenterology, vol. 33, no. 6, pp. 823–827, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. C. S. Chang, H. C. Lien, H. Z. Yeh, S. K. Poon, C. F. Tung, and G. H. Chen, “Effect of cisapride on gastric dysrhythmia and emptying of indigestible solids in type-II diabetic patients,” Scandinavian Journal of Gastroenterology, vol. 33, no. 6, pp. 600–604, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Kamiya, H. Adachi, M. Hirako et al., “Impaired gastric motility and its relationship to reflux symptoms in patients with nonerosive gastroesophageal reflux disease,” Journal of Gastroenterology, vol. 44, no. 3, pp. 183–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. H. C. Lim, S. I. Lee, J. D. Chen, and H. Park, “Electrogastrography associated with symptomatic changes after prokinetic drug treatment for functional dyspepsia,” World Journal of Gastroenterology, vol. 18, no. 41, pp. 5948–5956, 2012.
  89. J. D. Z. Chen, Z. Y. Lin, M. C. Edmunds 3rd, and R. W. Mccallum, “Effects of octreotide and erythromycin on gastric myoelectrical and motor activities in patients with gastroparesis,” Digestive Diseases and Sciences, vol. 43, no. 1, pp. 80–89, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Kamiya, M. Shikano, M. Tanaka, H. Tsukamoto, M. Ebi, Y. Hirata, et al., “The effect of omeprazole on gastric myoelectrical activity and emptying,” Journal of Smooth Muscle Research, vol. 47, no. 3-4, pp. 79–87, 2011.
  91. E. J. van der Schee and J. L. Grashuis, “Contraction-related, low-frequency components in canine electrogastrographic signals,” The American journal of physiology, vol. 245, no. 4, pp. G470–475, 1983. View at Scopus
  92. T. L. Abell and J. R. Malagelada, “Glucagon-evoked gastric dysrhythmias in humans shown by an improved electrogastrographic technique,” Gastroenterology, vol. 88, no. 6, pp. 1932–1940, 1985. View at Scopus
  93. C. F. Code and J. A. Marlett, “Modern medical physiology: canine tachygastria,” Mayo Clinic Proceedings, vol. 49, no. 5, pp. 325–332, 1974. View at Scopus
  94. C. H. You, W. Y. Chey, K. Y. Lee, R. Menguy, and A. Bortoff, “Gastric and small intestinal myoelectric dysrhythmia associated with chronic intractable nausea and vomiting,” Annals of Internal Medicine, vol. 95, no. 4, pp. 449–451, 1981. View at Scopus
  95. M. Bortolotti, P. Sarti, L. Barbara, and F. Brunelli, “Gastric myoelectric activity in patients with chronic idiopathic gastroparesis,” Journal of Gastrointestinal Motility, vol. 2, no. 2, pp. 104–108, 1990. View at Scopus
  96. R. J. Brzana, K. L. Koch, and S. Bingaman, “Gastric myoelectrical activity in patients with gastric outlet obstruction and idiopathic gastroparesis,” The American Journal of Gastroenterology, vol. 93, no. 10, pp. 1803–1809, 1998. View at Publisher · View at Google Scholar · View at Scopus
  97. W. A. Hoogerwerf, P. J. Pasricha, A. N. Kalloo, and M. M. Schuster, “Pain: the overlooked symptom in gastroparesis,” The American Journal of Gastroenterology, vol. 94, no. 4, pp. 1029–1033, 1999. View at Publisher · View at Google Scholar · View at Scopus
  98. C. J. Christensen, W. D. Johnson, and T. L. Abell, “Patients with cyclic vomiting pattern and diabetic gastropathy have more migraines, abnormal electrogastrograms, and gastric emptying,” Scandinavian Journal of Gastroenterology, vol. 43, no. 9, pp. 1076–1081, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. R. D. Rothstein, A. Alavi, and J. C. Reynolds, “Electrogastrography in patients with gastroparesis and effect of long-term cisapride,” Digestive Diseases and Sciences, vol. 38, no. 8, pp. 1518–1524, 1993. View at Scopus
  100. R. W. McCallum, J. D. Z. Chen, Z. Lin et al., “Gastric pacing improves emptying and symptoms in patients with gastroparesis,” Gastroenterology, vol. 114, no. 3, pp. 456–600, 1998. View at Publisher · View at Google Scholar · View at Scopus
  101. S. R. Daram, S. J. Tang, and T. L. Abell, “Video: temporary gastric electrical stimulation for gastroparesis: endoscopic placement of electrodes (ENDOstim),” Surgical Endoscopy, vol. 25, no. 10, pp. 3444–3445, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. T. L. Abell, “Nausea and vomiting of pregnancy and the electrogastrogram: old disease, new technology,” The American Journal of Gastroenterology, vol. 87, no. 6, pp. 689–691, 1992. View at Scopus
  103. K. L. Koch, R. M. Stern, M. Vasey, J. J. Botti, G. W. Creasy, and A. Dwyer, “Gastric dysrhythmias and nausea of pregnancy,” Digestive Diseases and Sciences, vol. 35, no. 8, pp. 961–968, 1990. View at Publisher · View at Google Scholar · View at Scopus
  104. J. W. Walsh, W. L. Hasler, C. E. Nugent, and C. Owyang, “Progesterone and estrogen are potential mediators of gastric slow-wave dysrhythmias in nausea of pregnancy,” The American Journal of Physiology, vol. 270, no. 3, pp. G506–G514, 1996. View at Scopus
  105. M. A. Jednak, E. M. Shadigian, M. S. Kim et al., “Protein meals reduce nausea and gastric slow wave dysrhythmic activity in first trimester pregnancy,” The American Journal of Physiology, vol. 277, no. 4, pp. G855–G861, 1999. View at Scopus
  106. M. Edelbroek, J. Schuurkes, W. De Ridder, M. Horowitz, J. Dent, and L. Akkermans, “Effect of cisapride on myoelectrical and motor responses of antropyloroduodenal region during intraduodenal lipid and antral tachygastria in conscious dog,” Digestive Diseases and Sciences, vol. 40, no. 4, pp. 901–911, 1995. View at Scopus
  107. K. L. Koch, R. M. Stern, M. W. Vasey, J. F. Seaton, L. M. Demers, and T. S. Harrison, “Neuroendocrine and gastric myoelectrical responses to illusory self-motion in humans,” The American Journal of Physiology, vol. 258, no. 2, pp. E304–E310, 1990. View at Scopus
  108. A. Leahy, K. Besherdas, C. Dayman, I. Mason, and O. Epstein, “Abnormalities of the electrogastrogram in functional gastrointestinal disorders,” The American Journal of Gastroenterology, vol. 94, no. 4, pp. 1023–1028, 1999. View at Publisher · View at Google Scholar · View at Scopus
  109. P. Thor, K. Lorens, S. Tabor, R. Herman, J. W. Konturek, and S. J. Konturek, “Dyfunction in gastric myoelectric and motor activity in Helicobacter pylori positive gastritis patients with non-ulcer dyspepsia,” Journal of Physiology and Pharmacology, vol. 47, no. 3, pp. 469–476, 1996. View at Scopus
  110. G. Riezzo, M. Chiloiro, F. Russo et al., “Gastric electrical activity and gastrointestinal hormones in dyspeptic patients,” Digestion, vol. 63, no. 1, pp. 20–29, 2001. View at Publisher · View at Google Scholar · View at Scopus
  111. B. H. Jonsson, K. Uvnäs-Moberg, T. Theorell, and R. Gotthard, “Gastrin, cholecystokinin, and somatostatin in a laboratory experiment of patients with functional dyspepsia,” Psychosomatic Medicine, vol. 60, no. 3, pp. 331–337, 1998. View at Scopus
  112. H. Kaneko, T. Mitsuma, K. Uchida, A. Furusawa, and K. Morise, “Immunoreactive-somatostatin, substance P, and calcitonin gene-related peptide concentrations of the human gastric mucosa in patients with nonulcer dyspepsia and peptic ulcer disease,” The American Journal of Gastroenterology, vol. 88, no. 6, pp. 898–904, 1993. View at Scopus
  113. M. Mazur, A. Furgala, K. Jablonski, T. Mach, and P. Thor, “Autonomic nervous system activity in constipation-predominant irritable bowel syndrome patients,” Medical Science Monitor, vol. 18, no. 8, pp. 493–499, 2012.
  114. S. F. Moss, S. Legon, A. E. Bishop, J. M. Polak, and J. Calam, “Effect of Helicobacter pylori on gastric somatostatin in duodenal ulcer disease,” The Lancet, vol. 340, no. 8825, pp. 930–932, 1992. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Hu, W. F. Grant, R. M. Stern, and K. L. Koch, “Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum,” Aviation Space and Environmental Medicine, vol. 62, no. 4, pp. 308–314, 1991. View at Scopus
  116. F. Y. Chang, C. L. Lu, C. Y. Chen et al., “Electrogastrographic characteristics in patients of stomach cancer,” Digestive Diseases and Sciences, vol. 46, no. 7, pp. 1458–1465, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Chasen and R. Bhargava, “Gastrointestinal symptoms, electrogastrography, inflammatory markers, and PG-SGA in patients with advanced cancer,” Supportive Care in Cancer, vol. 20, no. 6, pp. 1283–1290, 2012. View at Scopus
  118. H. S. Debinski, S. Ahmed, P. J. Milla, and M. A. Kamm, “Electrogastrography in chronic intestinal pseudoobstruction,” Digestive Diseases and Sciences, vol. 41, no. 7, pp. 1292–1297, 1996. View at Publisher · View at Google Scholar · View at Scopus
  119. J. S. Park, H. A. Kim, K. J. Lee, and C. H. Suh, “Intestinal pseudo-obstruction caused by neuromyopathy in a patient with systemic sclerosis,” Modern Rheumatology, vol. 22, no. 6, pp. 912–918, 2012.
  120. P. Kashyap and G. Farrugia, “Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years,” Gut, vol. 59, no. 12, pp. 1716–1726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. J. Manranki and H. P. Parkman, “Gastric electric stimulation for the treatment of gastroparesis,” Current Gastroenterology Reports, vol. 9, no. 4, pp. 286–294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. C. L. Berseth, “Gastrointestinal motility in the neonate,” Clinics in Perinatology, vol. 23, no. 2, pp. 179–190, 1996. View at Scopus
  123. K. L. Koch, T. N. Tran, R. M. Stern, S. Bingaman, and N. Sperry, “Gastric myoelectrical activity in premature and term infants,” Journal of Gastrointestinal Motility, vol. 5, no. 1, pp. 41–47, 1993. View at Scopus
  124. J. Liang, E. Co, M. Zhang, J. Pineda, and J. D. Z. Chen, “Development of gastric slow waves in preterm infants measured by electrogastrography,” The American Journal of Physiology, vol. 274, no. 3, pp. G503–G508, 1998. View at Scopus
  125. S. Cucchiara, G. Salvia, A. Scarcella et al., “Gestational maturation of electrical activity of the stomach,” Digestive Diseases and Sciences, vol. 44, no. 10, pp. 2008–2013, 1999. View at Publisher · View at Google Scholar · View at Scopus
  126. G. Riezzo, F. Indrio, O. Montagna et al., “Gastric electrical activity and gastric emptying in term and preterm newborns,” Neurogastroenterology and Motility, vol. 12, no. 3, pp. 223–229, 2000. View at Publisher · View at Google Scholar · View at Scopus
  127. J. Zhang, H. Ouyang, H. B. Zhu et al., “Development of gastric slow waves and effects of feeding in pre-term and full-term infants,” Neurogastroenterology and Motility, vol. 18, no. 4, pp. 284–291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. G. Riezzo, F. Indrio, F. Raimondi et al., “Maturation of gastric electrical activity, gastric emptying and intestinal permeability in preterm newborns during the first month of life,” Italian Journal of Pediatrics, vol. 35, no. 6, article 6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Cucchiara, G. Riezzo, R. Minella, F. Pezzolla, I. Giorgio, and S. Auricchio, “Electrogastrography in non-ulcer dyspepsia,” Archives of Disease in Childhood, vol. 67, no. 5, pp. 613–617, 1992. View at Scopus
  130. G. Riezzo, M. Chiloiro, V. Guerra, O. Borrelli, G. Salvia, and S. Cucchiara, “Comparison of gastric electrical activity and gastric emptying in healthy and dyspeptic children,” Digestive Diseases and Sciences, vol. 45, no. 3, pp. 517–524, 2000. View at Publisher · View at Google Scholar · View at Scopus
  131. J. D. Z. Chen, X. Lin, M. Zhang, R. B. Torres-Pinedo, and W. C. Orr, “Gastric myoelectrical activity in healthy children and children with functional dyspepsia,” Digestive Diseases and Sciences, vol. 43, no. 11, pp. 2384–2391, 1998. View at Scopus
  132. A. M. Ravelli and P. J. Milla, “Vomiting and gastroesophageal motor activity in children with disorders of the central nervous system,” Journal of Pediatric Gastroenterology and Nutrition, vol. 26, no. 1, pp. 56–63, 1998. View at Publisher · View at Google Scholar · View at Scopus
  133. S. K. F. Chong, “Electrogastrography in cyclic vomiting syndrome,” Digestive Diseases and Sciences, vol. 44, supplement, no. 8, pp. 64S–73S, 1999. View at Scopus
  134. A. M. Ravelli, S. E. Ledermann, W. M. Bisset, R. S. Trompeter, T. M. Barratt, and P. J. Milla, “Foregut motor function in chronic renal failure,” Archives of Disease in Childhood, vol. 67, no. 11, pp. 1343–1347, 1992. View at Scopus
  135. A. M. Ravelli, “Gastrointestinal function in chronic renal failure,” Pediatric Nephrology, vol. 9, no. 6, pp. 756–762, 1995. View at Publisher · View at Google Scholar · View at Scopus
  136. T. L. Abell, J. R. Malagelada, A. R. Lucas et al., “Gastric electromechanical and neurohormonal function in anorexia nervosa,” Gastroenterology, vol. 93, no. 5, pp. 958–965, 1987. View at Scopus
  137. A. M. Ravelli, B. A. Helps, S. P. Devane, B. D. Lask, and P. J. Milla, “Normal gastric antral myoelectrical activity in early onset anorexia nervosa,” Archives of Disease in Childhood, vol. 69, no. 3, pp. 342–346, 1993. View at Scopus
  138. S. P. Devane, A. M. Ravelli, W. M. Bisset, V. V. Smith, B. D. Lake, and P. J. Milla, “Gastric antral dysrhythmias in children with chronic idiopathic intestinal pseudoobstruction,” Gut, vol. 33, no. 11, pp. 1477–1481, 1992. View at Scopus
  139. G. Riezzo, R. M. Castellana, T. De Bellis, F. Laforgia, F. Indrio, and M. Chiloiro, “Gastric electrical activity in normal neonates during the first year of life: effect of feeding with breast milk and formula,” Journal of Gastroenterology, vol. 38, no. 9, pp. 836–843, 2003. View at Publisher · View at Google Scholar · View at Scopus
  140. G. Riezzo, F. Indrio, O. Montagna et al., “Gastric electrical activity and gastric emptying in preterm newborns fed standard and hydrolysate formulas,” Journal of Pediatric Gastroenterology and Nutrition, vol. 33, no. 3, pp. 290–295, 2001. View at Publisher · View at Google Scholar · View at Scopus
  141. A. M. Ravelli, P. Tobanelli, S. Volpi, and A. G. Ugazio, “Vomiting and gastric motility in infants with cow's milk allergy,” Journal of Pediatric Gastroenterology and Nutrition, vol. 32, no. 1, pp. 59–64, 2001. View at Publisher · View at Google Scholar · View at Scopus
  142. F. Indrio, G. Riezzo, F. Raimondi, M. Bisceglia, L. Cavallo, and R. Francavilla, “The effects of probiotics on feeding tolerance, bowel habits, and gastrointestinal motility in preterm newborns,” Journal of Pediatrics, vol. 152, no. 6, pp. 801–806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. Z. Weizman and A. Alsheikh, “Safety and tolerance of a probiotic formula in early infancy comparing two probiotic agents: a pilot study,” Journal of the American College of Nutrition, vol. 25, no. 5, pp. 415–419, 2006. View at Scopus
  144. F. Indrio, G. Riezzo, F. Raimondi et al., “Prebiotics improve gastric motility and gastric electrical activity in preterm newborns,” Journal of Pediatric Gastroenterology and Nutrition, vol. 49, no. 2, pp. 258–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. F. Perri, M. R. Pastore, and V. Annese, “13C-octanoic acid breath test for measuring gastric emptying of solids,” European Review for Medical and Pharmacological Sciences, vol. 9, no. 5, pp. 3–8, 2005. View at Scopus
  146. I. M. de Zwart and A. de Roos, “MRI for the evaluation of gastric physiology,” European Radiology, vol. 20, no. 11, pp. 2609–2616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. H. Fruehauf, D. Menne, M. A. Kwiatek, Z. Forras-Kaufman, E. Kaufman, O. Goetze, et al., “Inter-observer reproducibility and analysis of gastric volume measurements and gastric emptying assessed with magnetic resonance imaging,” Neurogastroenterology and Motility, vol. 23, no. 9, pp. 854–861, 2001.