About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 283635, 15 pages
http://dx.doi.org/10.1155/2013/283635
Review Article

Molecular Markers for Prostate Cancer in Formalin-Fixed Paraffin-Embedded Tissues

Research Unit in Biomedicine and Translational Oncology, Research Institute Vall Hebron University Hospital (VHIR) and Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain

Received 29 August 2013; Accepted 10 October 2013

Academic Editor: Renato Franco

Copyright © 2013 Tamara Sequeiros et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA Cancer Journal for Clinicians, vol. 63, no. 1, pp. 11–30, 2013. View at Publisher · View at Google Scholar
  2. M. J. Roobol, M. Kerkhof, F. H. Schröder et al., “Prostate cancer mortality reduction by prostate-specific antigen-based screening adjusted for nonattendance and contamination in the European Randomised Study of Screening for Prostate Cancer (ERSPC),” European Urology, vol. 56, no. 4, pp. 584–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. W. J. Catalona, M. A. Hudson, P. T. Scardino et al., “Selection of optimal prostate specific antigen cutoffs for early detection of prostate cancer: receiver operating characteristic curves,” Journal of Urology, vol. 152, no. 6 I, pp. 2037–2042, 1994. View at Scopus
  4. A. Heidenreich, J. Bellmunt, M. Bolla et al., “EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease,” European Urology, vol. 59, no. 1, pp. 61–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. V. D'Amico, R. Whittington, S. B. Malkowicz et al., “Pretreatment nomogram for prostate-specific antigen recurrence after radical prostatectomy or external-beam radiation therapy for clinically localized prostate cancer,” Journal of Clinical Oncology, vol. 17, no. 1, pp. 168–172, 1999. View at Scopus
  6. C. Sumey and T. W. Flaig, “Adjuvant medical therapy for prostate cancer,” Expert Opinion on Pharmacotherapy, vol. 12, no. 1, pp. 73–84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. O. Madu and Y. Lu, “Novel diagnostic biomarkers for prostate cancer,” Journal of Cancer, vol. 1, pp. 150–177, 2010. View at Publisher · View at Google Scholar
  8. H. J. Issaq and T. D. Veenstra, Proteomic and Metabolomic Approaches to Biomarker Discovery, Academic Press, 2013.
  9. T. A. Dunn, H. Fedor, W. B. Isaacs, A. M. de Marzo, and J. Luo, “Genome-wide expression analysis of recently processed formalin-fixed paraffin embedded human prostate tissues,” Prostate, vol. 69, no. 2, pp. 214–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. O. P. Kallioniemi, U. Wagner, J. Kononen, and G. Sauter, “Tissue microarray technology for high-throughput molecular profiling of cancer,” Human Molecular Genetics, vol. 10, no. 7, pp. 657–662, 2001. View at Scopus
  11. I. Zlobec, V. H. Koelzer, H. Dawson, A. Perren, and A. Lugli, “Next-generation tissue microarray (ngTMA) increases the quality of biomarker studies: an example using CD3, CD8, and CD45RO in the tumor microenvironment of six different solid tumor types,” Journal of Translational Medicine, vol. 11, article 104, 2013. View at Publisher · View at Google Scholar
  12. I. Zlobec, L. Terracciano, L. Tornillo et al., “Role of RHAMM within the hierarchy of well-established prognostic factors in colorectal cancer,” Gut, vol. 57, no. 10, pp. 1413–1419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Aravin and T. Tuschl, “Identification and characterization of small RNAs involved in RNA silencing,” FEBS Letters, vol. 579, no. 26, pp. 5830–5840, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. A. E. Pasquinelli, B. J. Reinhart, F. Slack et al., “Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA,” Nature, vol. 408, no. 6808, pp. 86–89, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Zhao and D. Srivastava, “A developmental view of microRNA function,” Trends in Biochemical Sciences, vol. 32, no. 4, pp. 189–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Coppola, R. de Maria, and D. Bonci, “MicroRNAs and prostate cancer,” Endocrine-Related Cancer, vol. 17, no. 1, pp. F1–F17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Hassan, A. Ahmad, S. Sethi, and F. H. Sarkar, “Recent updates on the role of microRNAs in prostate cancer,” Journal of Hematology and Oncology, vol. 5, article 9, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Pollari, S. K. Leivonen, Perälä et al., “Identification of microRNAs inhibiting TGF-β-induced IL-11 production in bone metastatic breast cancer cells,” PLoS ONE, vol. 7, no. 5, Article ID e37361, 2012. View at Publisher · View at Google Scholar
  21. J. Carlsson, S. Davidsson, G. Helenius et al., “A miRNA expression signature that separates between normal and malignant prostate tissues,” Cancer Cell International, vol. 11, article 14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Rajewsky, “microRNA target predictions in animals,” Nature Genetics, vol. 38, no. 1, pp. S8–S13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Pang, C. Y. F. Young, and H. Yuan, “MicroRNAs and prostate cancer,” Acta Biochimica et Biophysica Sinica, vol. 42, no. 6, pp. 363–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. X. B. Shi, L. Xue, J. Yang et al., “An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 50, pp. 19983–19988, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Li, Y. T. Chen, S. Josson et al., “MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells,” PLoS ONE, vol. 8, no. 8, Article ID e70987, 2013. View at Publisher · View at Google Scholar
  27. M. D. Mattie, C. C. Benz, J. Bowers et al., “Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies,” Molecular Cancer, vol. 5, article 24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. K. P. Porkka, M. J. Pfeiffer, K. K. Waltering, R. L. Vessella, T. L. J. Tammela, and T. Visakorpi, “MicroRNA expression profiling in prostate cancer,” Cancer Research, vol. 67, no. 13, pp. 6130–6135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. B. Munding, A. T. Adai, A. Maghnouj et al., “Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma,” International Journal of Cancer, vol. 131, no. 2, pp. E86–E95, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. A. E. Szafranska, T. S. Davison, J. Shingara et al., “Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling,” Journal of Molecular Diagnostics, vol. 10, no. 5, pp. 415–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Hasemeier, M. Christgen, H. Kreipe, and U. Lehmann, “Reliable microRNA profiling in routinely processed formalin-fixed paraffin-embedded breast cancer specimens using fluorescence labelled bead technology,” BMC Biotechnology, vol. 8, article 90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. S. Jang, V. A. Simon, R. M. Feddersen et al., “Quantitative miRNA expression analysis using fluidigm microfluidics dynamic arrays,” BMC Genomics, vol. 12, article 144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Xi, G. Nakajima, E. Gavin et al., “Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples,” RNA, vol. 13, no. 10, pp. 1668–1674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. D. de Biase, M. Visani, L. Morandi et al., “miRNAs expression analysis in paired fresh/Frozen and dissected formalin fixed and paraffin embedded glioblastoma using real-time PCR,” PLoS ONE, vol. 7, no. 4, Article ID e35596, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. K. R. M. Leite, J. M. S. Canavez, S. T. Reis et al., “MiRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue,” Urologic Oncology, vol. 29, no. 5, pp. 533–537, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. R. Dijkstra, L. J. M. Mekenkamp, S. Teerenstra, I. de Krijger, and I. D. Nagtegaal, “MicroRNA expression in formalin-fixed paraffin embedded tissue using real time quantitative PCR: the strengths and pitfalls,” Journal of Cellular and Molecular Medicine, vol. 16, pp. 683–690, 2012. View at Publisher · View at Google Scholar
  38. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Ambs, R. L. Prueitt, M. Yi et al., “Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer,” Cancer Research, vol. 68, no. 15, pp. 6162–6170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Ozen, C. J. Creighton, M. Ozdemir, and M. Ittmann, “Widespread deregulation of microRNA expression in human prostate cancer,” Oncogene, vol. 27, no. 12, pp. 1788–1793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Nonn, A. Vaishnav, L. Gallagher, and P. H. Gann, “mRNA and micro-RNA expression analysis in laser-capture microdissected prostate biopsies: valuable tool for risk assessment and prevention trials,” Experimental and Molecular Pathology, vol. 88, no. 1, pp. 45–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Szczyrba, E. Löprich, S. Wach et al., “The microRNA profile of prostate carcinoma obtained by deep sequencing,” Molecular Cancer Research, vol. 8, no. 4, pp. 529–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Wach, E. Nolte, J. Szczyrba et al., “MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening,” International Journal of Cancer, vol. 130, no. 3, pp. 611–621, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Sethi, D. Kong, S. Land, G. Dyson, W. A. Sakr, and F. H. Sarkar, “Comprehensive molecular oncogenomic profiling and miRNA analysis of prostate cancer,” American Journal of Translational Research, vol. 5, no. 2, pp. 200–211, 2013.
  45. M. Schubert, M. Spahn, S. Kneitz et al., “Distinct microRNA expression profile in prostate cancer patients with early clinical failure and the impact of let-7 as prognostic marker in high-risk prostate cancer,” PLoS ONE, vol. 8, no. 6, Article ID e65064, 2013. View at Publisher · View at Google Scholar
  46. K. R. M. Leite, J. M. Sousa-Canavez, S. T. Reis et al., “Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis,” Urologic Oncology, vol. 29, no. 3, pp. 265–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Z. Michael, S. M. O'Connor, N. G. Van Holst Pellekaan, G. P. Young, and R. J. James, “Reduced accumulation of specific microRNAs in colorectal neoplasia,” Molecular Cancer Research, vol. 1, no. 12, pp. 882–891, 2003. View at Scopus
  48. N. Yanaihara, N. Caplen, E. Bowman et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. S. O. Suh, Y. Chen, M. S. Zaman et al., “MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer,” Carcinogenesis, vol. 32, no. 5, pp. 772–778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. X. Chen, J. Gong, H. Zeng et al., “MicroRNA145 targets BNIP3 and suppresses prostate cancer progression,” Cancer Research, vol. 70, no. 7, pp. 2728–2738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Peng, W. Guo, T. Liu et al., “Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT,” PLoS ONE, vol. 6, no. 5, Article ID e20341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Kong, E. Heath, W. Chen et al., “Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM,” PLoS ONE, vol. 7, no. 3, Article ID e33729, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. S. M. Johnson, H. Grosshans, J. Shingara et al., “RAS is regulated by the let-7 microRNA family,” Cell, vol. 120, no. 5, pp. 635–647, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. S. T. Reis, L. S. Timoszczuk, J. Pontes-Junior et al., “The role of micro RNAs let7c, 100 and 218 expression and their target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in prostate cancer,” Clinics, vol. 68, no. 5, pp. 652–657, 2013. View at Publisher · View at Google Scholar
  55. M. Spahn, S. Kneitz, C. J. Scholz et al., “Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence,” International Journal of Cancer, vol. 127, no. 2, pp. 394–403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Barron, J. Keenan, P. Gammell et al., “Biochemical relapse following radical prostatectomy and miR-200a levels in prostate cancer,” Prostate, vol. 72, no. 11, pp. 1193–1199, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. B. A. Walter, V. A. Valera, P. A. Pinto, and M. J. Merino, “Comprehensive microRNA profiling of prostate cancer,” Journal of Cancer, vol. 4, no. 5, pp. 350–357, 2013. View at Publisher · View at Google Scholar
  58. Y. Liu, Y. Han, H. Zhang et al., “Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells,” PLoS ONE, vol. 7, no. 12, Article ID e52280, 2012. View at Publisher · View at Google Scholar
  59. B. L. Mihelich, E. A. Khramtsova, N. Arva et al., “miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells,” Journal of Biological Chemistry, vol. 286, no. 52, pp. 44503–44511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Schaefer, M. Jung, H. J. Mollenkopf et al., “Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma,” International Journal of Cancer, vol. 126, no. 5, pp. 1166–1176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. F. Segura, D. Hanniford, S. Menendez et al., “Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 6, pp. 1814–1819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. I. K. Guttilla and B. A. White, “Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells,” Journal of Biological Chemistry, vol. 284, no. 35, pp. 23204–23216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Jiang, P. Mao, L. Song et al., “miR-182 as a prognostic marker for glioma progression and patient survival,” American Journal of Pathology, vol. 177, no. 1, pp. 29–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. Z. Liu, J. Liu, M. F. Segura et al., “MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma,” Journal of Pathology, vol. 228, no. 2, pp. 204–215, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Hirata, K. Ueno, V. Shahryari et al., “MicroRNA-182-5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer,” PLoS ONE, vol. 8, no. 1, Article ID e55502, 2013. View at Publisher · View at Google Scholar
  66. K. Tsuchiyama, H. Ito, M. Taga et al., “Expression of microRNAs associated with Gleason grading system in prostate cancer: miR-182-5p is a useful marker for high grade prostate cancer,” Prostate, vol. 73, no. 8, pp. 827–834, 2013. View at Publisher · View at Google Scholar
  67. Q. Long, B. A. Johnson, A. O. Osunkoya et al., “Protein-coding and microRNA biomarkers of recurrence of prostate cancer following radical prostatectomy,” American Journal of Pathology, vol. 179, no. 1, pp. 46–54, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Bjartell, R. Montironi, D. M. Berney, and L. Egevad, “Tumour markers in prostate cancer II: diagnostic and prognostic cellular biomarkers,” Acta Oncologica, vol. 50, no. 1, pp. 76–84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Guo, W. Liu, Z. Ju et al., “An efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for reverse phase protein arrays,” Proteome Science, vol. 10, article 56, no. 1, 2012. View at Publisher · View at Google Scholar
  70. J. A. Ramos-Vara, “Technical aspects of immunohistochemistry,” Veterinary Pathology, vol. 42, no. 4, pp. 405–426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Robertson, K. Savage, J. S. Reis-Filho, and C. M. Isacke, “Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue,” BMC Cell Biology, vol. 9, article 13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. D. G. Bostwick, “Prostate-specific antigen: current role in diagnostic pathology of prostate cancer,” American Journal of Clinical Pathology, vol. 102, no. 4, pp. S31–S37, 1994. View at Scopus
  73. R. J. Ablin, “A retrospective and prospective overview of prostate-specific antigen,” Journal of Cancer Research and Clinical Oncology, vol. 123, no. 11-12, pp. 583–594, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Haese, M. Graefen, T. Steuber et al., “Human glandular kallikrein 2 levels in serum for discrimination of pathologically organ-confined from locally-advanced prostate cancer in total PSA-levels below 10 ng/ml,” Prostate, vol. 49, no. 2, pp. 101–109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. D. M. Peehl, “Prostate specific antigen role and function,” Cancer, vol. 75, no. 7, pp. 2021–2026, 1995. View at Scopus
  76. M. F. Darson, A. Pacelli, P. Roche et al., “Human glandular kallikrein 2 (hK2) expression in prostatic intraepithelial neoplasia and adenocarcinoma: a novel prostate cancer marker,” Urology, vol. 49, no. 6, pp. 857–862, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. U. H. Stenman, J. Leinonen, W. M. Zhang, and P. Finne, “Prostate-specific antigen,” Seminars in Cancer Biology, vol. 9, no. 2, pp. 83–93, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. M. P. W. Gallee, E. Visser-De Jong, J. A. G. M. van der Korput et al., “Variation of prostate-specific antigen expression in different tumour growth patterns present in prostatectomy specimens,” Urological Research, vol. 18, no. 3, pp. 181–187, 1990. View at Publisher · View at Google Scholar · View at Scopus
  79. M. P. Roudier, L. D. True, C. S. Higano et al., “Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone,” Human Pathology, vol. 34, no. 7, pp. 646–653, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. A. A. Renshaw and S. R. Granter, “Metastatic, sarcomatoid, and PSA- and PAP-negative prostatic carcinoma: diagnosis by fine-needle aspiration,” Diagnostic Cytopathology, vol. 23, no. 3, pp. 199–201, 2000. View at Scopus
  81. P. J. Carder, V. Speirs, J. Ramsdale, and M. R. J. Lansdown, “Expression of prostate specific antigen in male breast cancer,” Journal of Clinical Pathology, vol. 58, no. 1, pp. 69–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. A. A. A. Elgamal, N. L. Ectors, S. Sunardhi-Widyaputra, H. P. Van Poppel, B. J. Van Damme, and L. V. Baert, “Detection of prostate specific antigen in pancreas and salivary glands: a potential impact on prostate cancer overestimation,” Journal of Urology, vol. 156, no. 2, pp. 464–468, 1996. View at Scopus
  83. G. F. Holmes, D. W. Eisele, D. Rosenthal, and W. H. Westra, “PSA immunoreactivity in a parotid oncocytoma: a diagnostic pitfall in discriminating primary parotid neoplasms from metastatic prostate cancer,” Diagnostic Cytopathology, vol. 19, pp. 221–225, 1998.
  84. T. Sheridan, M. Herawi, J. I. Epstein, and P. B. Illei, “The role of P501S and PSA in the diagnosis of metastatic adenocarcinoma of the prostate,” American Journal of Surgical Pathology, vol. 31, no. 9, pp. 1351–1355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Yin, R. Dhir, and A. V. Parwani, “Diagnostic utility of p501s (prostein) in comparison to prostate specific antigen (PSA) for the detection of metastatic prostatic adenocarcinoma,” Diagnostic Pathology, vol. 2, no. 1, article 41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. Z. Gu, G. Thomas, J. Yamashiro et al., “Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer,” Oncogene, vol. 19, no. 10, pp. 1288–1296, 2000. View at Scopus
  87. J. S. Lam, J. Yamashiro, I. P. Shintaku et al., “Prostate stem cell antigen is overexpressed in prostate cancer metastases,” Clinical Cancer Research, vol. 11, no. 7, pp. 2591–2596, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. Z. Zhigang and S. Wenlv, “Prostate stem cell antigen (PSCA) expression in human prostate cancer tissues and its potential role in prostate carcinogenesis and progression of prostate cancer,” World Journal of Surgical Oncology, vol. 2, article 13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Zhou, Z. Jiang, and J. I. Epstein, “Expression and diagnostic utility of alpha-methylacyl-CoA-racemase (P504S) in foamy gland and pseudohyperplastic prostate cancer,” American Journal of Surgical Pathology, vol. 27, no. 6, pp. 772–778, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. I. Leav, J. E. McNeal, S. M. Ho, and Z. Jiang, “α-Methylacyl-CoA racemase (P504S) expression in evolving carcinomas within benign prostatic hyperplasia and in cancers of the transition zone,” Human Pathology, vol. 34, no. 3, pp. 228–233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Luo, S. Zha, W. R. Gage et al., “α-methylacyl-CoA racemase: a new molecular marker for prostate cancer,” Cancer Research, vol. 62, no. 8, pp. 2220–2226, 2002. View at Scopus
  92. R. Beach, A. M. Gown, M. N. de Peralta-Venturina et al., “P504S immunohistochemical detection in 405 prostatic specimens including 376 18-gauge needle biopsies,” American Journal of Surgical Pathology, vol. 26, no. 12, pp. 1588–1596, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. Z. Jiang, B. A. Woda, K. L. Rock et al., “P504S: a new molecular marker for the detection of prostate carcinoma,” American Journal of Surgical Pathology, vol. 25, no. 11, pp. 1397–1404, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. M. A. Rubin, M. Zhou, S. M. Dhanasekaran et al., “α-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer,” Journal of the American Medical Association, vol. 287, no. 13, pp. 1662–1670, 2002. View at Scopus
  95. A. Bjartell, R. Johansson, T. Björk et al., “Immunohistochemical detection of cysteine-rich secretory protein 3 in tissue and in serum from men with cancer or benign enlargement of the prostate gland,” Prostate, vol. 66, no. 6, pp. 591–603, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Kosari, Y. W. Asmann, J. C. Cheville, and G. Vasmatzis, “Cysteine-rich secretory protein-3: a potential biomarker for prostate cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 11, pp. 1419–1426, 2002. View at Scopus
  97. A. S. Bjartell, H. Al-Ahmadie, A. M. Serio et al., “Association of cysteine-rich secretory protein 3 and β-microseminoprotein with outcome after radical prostatectomy,” Clinical Cancer Research, vol. 13, no. 14, pp. 4130–4138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. H. J. Kim, D. Lv, Y. Zhang, T. Peng, and X. Ma, “Golgi phosphoprotein 2 in physiology and in diseases,” Cell & Bioscience, vol. 2, no. 1, article 31, 2012. View at Publisher · View at Google Scholar
  99. G. Kristiansen, F. R. Fritzsche, K. Wassermann et al., “GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics,” British Journal of Cancer, vol. 99, no. 6, pp. 939–948, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Varambally, B. Laxman, R. Mehra et al., “Golgi protein GOLM1 is a tissue and urine biomarker of prostate cancer,” Neoplasia, vol. 10, no. 11, pp. 1285–1294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. X. J. Yang, K. Lecksell, P. Gaudin, and J. I. Epstein, “Rare expression of high-molecular-weight cytokeratin in adenocarcinoma of the prostate gland. A study of 100 cases of metastatic and locally advanced prostate cancer,” American Journal of Surgical Pathology, vol. 23, no. 2, pp. 147–152, 1999. View at Publisher · View at Google Scholar · View at Scopus
  102. S. I. Aishima, Y. Asayama, K. I. Taguchi et al., “The utility of keratin 903 as a new prognostic marker in mass-forming-type intrahepatic cholangiocarcinoma,” Modern Pathology, vol. 15, no. 11, pp. 1181–1190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Y. Chuang, A. M. DeMarzo, R. W. Veltri, R. B. Sharma, C. J. Bieberich, and J. I. Epstein, “Immunohistochemical differentiation of high-grade prostate carcinoma from urothelial carcinoma,” American Journal of Surgical Pathology, vol. 31, no. 8, pp. 1246–1255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Varma, M. Morgan, M. B. Amin, S. Wozniak, and B. Jasani, “High molecular weight cytokeratin antibody (clone 34βE12): a sensitive marker for differentiation of high-grade invasive urothelial carcinoma from prostate cancer,” Histopathology, vol. 42, no. 2, pp. 167–172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. L. P. Kunju, R. Mehra, M. Snyder, and R. B. Shah, “Prostate-specific antigen, high-molecular-weight cytokeratin (clone 34βE12), and/or p63: an optimal immunohistochemical panel to distinguish poorly differentiated prostate adenocarcinoma from urothelial carcinoma,” American Journal of Clinical Pathology, vol. 125, no. 5, pp. 675–681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Z. Ali and J. I. Epstein, “False positive labeling of prostate cancer with high molecular weight cytokeratin: P63 a more specific immunomarker for basal cells,” American Journal of Surgical Pathology, vol. 32, no. 12, pp. 1890–1895, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. Z. Jiang, C. Li, A. Fischer, K. Dresser, and B. A. Woda, “Using an AMACR (P504S)/34βE12/p63 cocktail for the detection of small focal prostate carcinoma in needle biopsy specimens,” American Journal of Clinical Pathology, vol. 123, no. 2, pp. 231–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. D. E. Tacha and R. T. Miller, “Use of p63/P504S monoclonal antibody cocktail in immunohistochemical staining of prostate tissue,” Applied Immunohistochemistry and Molecular Morphology, vol. 12, no. 1, pp. 75–78, 2004. View at Scopus
  109. M. Herawi and J. I. Epstein, “Immunohistochemical antibody cocktail staining (p63/HMWCK/AMACR) of ductal adenocarcinoma and Gleason pattern 4 cribriform and noncribriform acinar adenocarcinomas of the prostate,” American Journal of Surgical Pathology, vol. 31, no. 6, pp. 889–894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Kumaresan, N. Kakkar, A. Verma, A. K. Mandal, S. K. Singh, and K. Joshi, “Diagnostic utility of α-methylacyl CoA racemase (P504S) & HMWCK in morphologically difficult prostate cancer,” Diagnostic Pathology, vol. 5, no. 1, article 83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Zhou, R. Shah, R. Shen, and M. A. Rubin, “Basal cell cocktail (34βE12 + p63) improves the detection of prostate basal cells,” American Journal of Surgical Pathology, vol. 27, no. 3, pp. 365–371, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. C. Boran, E. Kandirali, F. Yilmaz, E. Serin, and M. Akyol, “Reliability of the 34βE12, keratin 5/6, p63, bcl-2, and AMACR in the diagnosis of prostate carcinoma,” Urologic Oncology, vol. 29, no. 6, pp. 614–623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. P. D. Dabir, P. Ottosen, S. Høyer, and S. Hamilton-Dutoit, “Comparative analysis of three- and two-antibody cocktails to AMACR and basal cell markers for the immunohistochemical diagnosis of prostate carcinoma,” Diagnostic Pathology, vol. 7, article 81, 2012. View at Publisher · View at Google Scholar
  114. V. W. L. Ng, M. Koh, S. Y. Tan, and P. H. Tan, “Is triple immunostaining with 34βE12, p63, and racemase in prostate cancer advantageous? A tissue microarray study,” American Journal of Clinical Pathology, vol. 127, no. 2, pp. 248–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Chaux, S. B. Peskoe, N. Gonzalez-Roibon et al., “Loss of PTEN expression is associated with increased risk of recurrence after prostatectomy for clinically localized prostate cancer,” Modern Pathology, vol. 25, pp. 1543–1549, 2012. View at Publisher · View at Google Scholar
  116. H. Beltran, R. Yelensky, G. M. Frampton et al., “Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity,” European Urology, vol. 63, no. 5, pp. 920–926, 2013. View at Publisher · View at Google Scholar
  117. J. Cuzick, Z. H. Yang, G. Fisher et al., “Prognostic value of PTEN loss in men with conservatively managed localised prostate cancer,” British Journal of Cancer, vol. 108, no. 12, pp. 2582–2589, 2013. View at Publisher · View at Google Scholar
  118. T. L. Lotan, B. Gurel, S. Sutcliffe et al., “PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients,” Clinical Cancer Research, vol. 17, no. 20, pp. 6563–6573, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. K. Choucair, J. Ejdelman, F. Brimo, A. Aprikian, S. Chevalier, and J. Lapointe, “PTEN genomic deletion predicts prostate cancer recurrence and is associated with low AR expression and transcriptional activity,” BMC Cancer, vol. 12, article 543, 2012. View at Publisher · View at Google Scholar
  120. T. Scholzen and J. Gerdes, “The Ki-67 protein: from the known and the unknown,” Journal of Cellular Physiology2000, vol. 182, no. 3, pp. 311–322.
  121. S. H. Madani, S. Ameli, S. Khazaei, M. Kanani, and B. Izadi, “Frequency of Ki-67 (MIB-1) and P53 expressions among patients with prostate cancer,” Indian Journal of Pathology and Microbiology, vol. 54, no. 4, pp. 688–691, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Zellweger, S. Günther, I. Zlobec et al., “Tumour growth fraction measured by immunohistochemical staining of Ki67 is an independent prognostic factor in preoperative prostate biopsies with small-volume or low-grade prostate cancer,” International Journal of Cancer, vol. 124, no. 9, pp. 2116–2123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Kirschenbaum, X. H. Liu, S. Yao, and A. C. Levine, “The role of cyclooxygenase-2 in prostate cancer,” Urology, vol. 58, no. 2, pp. 127–131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. P. T. Tran, R. K. Hales, J. Zeng et al., “Tissue biomarkers for prostate cancer radiation therapy,” Current Molecular Medicine, vol. 12, no. 6, pp. 772–787, 2012.
  125. J. L. Masferrer, K. M. Leahy, A. T. Koki et al., “Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors,” Cancer Research, vol. 60, no. 5, pp. 1306–1311, 2000. View at Scopus
  126. R. S. Pruthi, J. E. Derksen, D. Moore et al., “Phase II trial of celecoxib in prostate-specific antigen recurrent prostate cancer after definitive radiation therapy or radical prostatectomy,” Clinical Cancer Research, vol. 12, no. 7, pp. 2172–2177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. B. Wen, E. Deutsch, P. Eschwege et al., “Cyclooxygenase-2 inhibitor NS398 enhances antitumor effect of irradiation on hormone refractory human prostate carcinoma cells,” Journal of Urology, vol. 170, no. 5, pp. 2036–2039, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. S. T. Palayoor, M. J. Arayankalayil, A. Shoaibi, and C. Norman Coleman, “Radiation sensitivity of human carcinoma cells transfected with small interfering RNA targeted against cyclooxygenase-2,” Clinical Cancer Research, vol. 11, no. 19, pp. 6980–6986, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. E. Nakata, K. A. Mason, N. Hunter et al., “Potentiation of tumor response to radiation or chemoradiation by selective cyclooxygenase-2 enzyme inhibitors,” International Journal of Radiation Oncology Biology Physics, vol. 58, no. 2, pp. 369–375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. L. Y. Khor, K. Bae, A. Pollack et al., “COX-2 expression predicts prostate-cancer outcome: analysis of data from the RTOG 92-02 trial,” Lancet Oncology, vol. 8, no. 10, pp. 912–920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. T. J. Roth, Y. Sheinin, C. M. Lohse et al., “B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy,” Cancer Research, vol. 67, no. 16, pp. 7893–7900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. G. Chavin, Y. Sheinin, P. L. Crispen et al., “Expression of immunosuppresive B7-H3 ligand by hormone-treated prostate cancer tumors and metastases,” Clinical Cancer Research, vol. 15, no. 6, pp. 2174–2180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. X. Zang, R. H. Thompson, H. A. Al-Ahmadie et al., “B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19458–19463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. P. J. Vlachostergios, F. Karasavvidou, A. Patrikidou et al., “p53 and cyclooxygenase-2 expression are directly associated with cyclin D1 expression in radical prostatectomy specimens of patients with hormone-naïve prostate cancer,” Pathology and Oncology Research, vol. 18, no. 2, pp. 245–252, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Che, M. DeSilvio, A. Pollack et al., “Prognostic value of abnormal p53 expression in locally advanced prostate cancer treated with androgen deprivation and radiotherapy: a study based on RTOG 9202,” International Journal of Radiation Oncology Biology Physics, vol. 69, no. 4, pp. 1117–1123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. D. S. Scherr, E. D. Vaughan Jr., J. Wei et al., “bcl-2 and p53 expression in clinically localized prostate cancer predicts response to external beam radiotherapy,” Journal of Urology, vol. 162, no. 1, pp. 12–17, 1999. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Tsuji, Y. Murakami, H. Kanayama, T. Sano, and S. Kagawa, “Immunohistochemical analysis of Ki-67 antigen and Bcl-2 protein expression in prostate cancer: effect of neoadjuvant hormonal therapy,” British Journal of Urology, vol. 81, no. 1, pp. 116–121, 1998. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Bylund, P. Stattin, A. Widmark, and A. Bergh, “Predictive value of bcl-2 immunoreactivity in prostate cancer patients treated with radiotherapy,” Radiotherapy and Oncology, vol. 49, no. 2, pp. 143–148, 1998. View at Publisher · View at Google Scholar · View at Scopus
  139. K. Anvari, M. S. Toussi, M. Kalantari et al., “Expression of Bcl-2 and Bax in advanced or metastatic prostate carcinoma,” Urology Journal, vol. 9, no. 1, pp. 381–388, 2012. View at Scopus
  140. L. Y. Khor, J. Moughan, T. Al-Saleem et al., “Bcl-2 and bax expression predict prostate cancer outcome in men treated with androgen deprivation and radiotherapy on radiation therapy oncology group protocol 92-02,” Clinical Cancer Research, vol. 13, no. 12, pp. 3585–3590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. R. Vergis, C. M. Corbishley, K. Thomas et al., “Expression of Bcl-2, p53, and MDM2 in localized prostate cancer with respect to the outcome of radical radiotherapy dose escalation,” International Journal of Radiation Oncology Biology Physics, vol. 78, no. 1, pp. 35–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. L. Y. Khor, K. Bae, T. Al-Saleem et al., “Protein kinase A RI-α predicts for prostate cancer outcome: analysis of radiation therapy oncology group trial 86-10,” International Journal of Radiation Oncology Biology Physics, vol. 71, no. 5, pp. 1309–1315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. A. Pollack, K. Bae, L. Y. Khor et al., “The importance of protein kinase A in prostate cancer: relationship to patient outcome in Radiation Therapy Oncology Group trial 92-02,” Clinical Cancer Research, vol. 15, no. 17, pp. 5478–5484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Berruti, E. Bollito, C. M. Cracco et al., “The prognostic role of immunohistochemical chromogranin A expressionin prostate cancer patients is significantly modified by androgen-deprivation therapy,” Prostate, vol. 70, no. 7, pp. 718–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Mosca, A. Berruti, L. Russo, M. Torta, and L. Dogliotti, “The neuroendocrine phenotype in prostate cancer: basic and clinical aspects,” Journal of endocrinological investigation, vol. 28, no. 11, pp. 141–145, 2005. View at Scopus
  146. M. H. Ather, F. Abbas, N. Faruqui, M. Israr, and S. Pervez, “Correlation of three immunohistochemically detected markers of neuroendocrine differentiation with clinical predictors of disease progression in prostate cancer,” BMC Urology, vol. 8, no. 1, article 21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. M. May, M. Siegsmund, F. Hammermann, V. Loy, and S. Gunia, “Prognostic significance of proliferation activity and neuroendocrine differentiation to predict treatment failure after radical prostatectomy,” Scandinavian Journal of Urology and Nephrology, vol. 41, no. 5, pp. 375–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. E. A. M. Heijnsdijk, A. Der Kinderen, E. M. Wever, G. Draisma, M. J. Roobol, and H. J. de Koning, “Overdetection, overtreatment and costs in prostate-specific antigen screening for prostate cancer,” British Journal of Cancer, vol. 101, no. 11, pp. 1833–1838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. G. Sardana, B. Dowell, and E. P. Diamandis, “Emerging biomarkers for the diagnosis and prognosis of prostate cancer,” Clinical Chemistry, vol. 54, no. 12, pp. 1951–1960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. L. F. Sempere, M. Preis, T. Yezefski et al., “Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered microRNA expression in solid tumors,” Clinical Cancer Research, vol. 16, no. 16, pp. 4246–4255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. B. S. Nielsen, T. Moller, and K. Holmstrom, “Abstract LB-480: MicroRNA in situ hybridization techniques: co-detection of target protein and image analysis-based quantitation,” Cancer Research, vol. 72, no. 8, supplement 1, Article ID LB-480, 2012. View at Publisher · View at Google Scholar
  152. L. H. Cazares, D. A. Troyer, B. Wang, R. R. Drake, and O. John Semmes, “MALDI tissue imaging: from biomarker discovery to clinical applications,” Analytical and Bioanalytical Chemistry, vol. 401, no. 1, pp. 17–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. D. Di Vizio, M. Morello, A. C. Dudley et al., “Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease,” American Journal of Pathology, vol. 181, no. 5, pp. 1573–1584, 2012. View at Publisher · View at Google Scholar
  154. D. F. Liu, J. T. Wu, J. M. Wang, Q. Z. Liu, Z. L. Gao, and Y. X. Liu, “MicroRNA expression profile analysis reveals diagnostic biomarker for human prostate cancer,” The Asian Pacific Journal of Cancer Prevention, vol. 13, no. 7, pp. 3313–3317, 2012. View at Publisher · View at Google Scholar
  155. X. Zhang, A. Ladd, E. Dragoescu, W. T. Budd, J. L. Ware, and Z. E. Zehner, “MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection,” Clinical and Experimental Metastasis, vol. 26, no. 8, pp. 965–979, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Carlsson, G. Helenius, M. G. Karlsson, O. Andrén, et al., “Differences in microRNA expression during tumor development in the transition and peripheral zones of the prostate,” BMC Cancer, vol. 13, article 362, 2013.
  157. T. Li, R. S. Li, Y. H. Li et al., “MiR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer,” Journal of Urology, vol. 187, no. 4, pp. 1466–1472, 2012. View at Publisher · View at Google Scholar · View at Scopus
  158. Y. Li, D. Kong, A. Ahmad, B. Bao, G. Dyson, and F. H. Sarkar, “Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion,” Epigenetics, vol. 7, no. 8, pp. 940–949, 2012. View at Publisher · View at Google Scholar
  159. P. Ru, R. Steele, P. Newhall, N. J. Phillips, K. Toth, and R. B. Ray, “miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling,” Molecular Cancer Therapeutics, vol. 11, no. 5, pp. 1166–1173, 2012. View at Publisher · View at Google Scholar
  160. S. Yamamura, S. Saini, S. Majid et al., “Microrna-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells,” PLoS ONE, vol. 7, no. 1, Article ID e29722, 2012. View at Publisher · View at Google Scholar · View at Scopus
  161. A. Formosa, A. M. Lena, E. K. Markert et al., “DNA methylation silences miR-132 in prostate cancer,” Oncogene, vol. 32, no. 1, pp. 127–134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  162. W. Guo, D. Ren, X. Chen et al., “HEF1 promotes epithelial mesenchymal transition and bone invasion in prostate cancer under the regulation of microRNA-145,” Journal of Cellular Biochemistry, vol. 114, pp. 1606–1615, 2013. View at Publisher · View at Google Scholar
  163. Y. G. Man, S. W. Fu, A. J. Liu et al., “Aberrant expression of chromogranin A, miR-146a,and miR-146b-5p in prostate structures with focally disrupted basal cell layers: an early sign of invasion and hormone-refractory cancer?” Cancer Genomics and Proteomics, vol. 8, no. 5, pp. 235–244, 2011. View at Scopus
  164. G. Viticchiè, A. M. Lena, A. Latina et al., “MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines,” Cell Cycle, vol. 10, no. 7, pp. 1121–1131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. S. Ma, Y. P. Chan, P. S. Kwan et al., “MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2,” Cancer Research, vol. 71, no. 2, pp. 583–592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. J. Köllermann, T. Schlomm, H. Bang et al., “Expression and Prognostic Relevance of Annexin A3 in Prostate Cancer,” European Urology, vol. 54, no. 6, pp. 1314–1323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. S. S. Forootan, C. S. Foster, V. R. Aachi et al., “Prognostic significance of osteopontin expression in human prostate cancer,” International Journal of Cancer, vol. 118, no. 9, pp. 2255–2261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. A. Descazeaud, A. de La Taille, Y. Allory et al., “Characterization of ZAG protein expression in prostate cancer using a semi-automated microscope system,” Prostate, vol. 66, no. 10, pp. 1037–1043, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. P. Y. Yip, J. G. Kench, K. K. Rasiah et al., “Low AZGP1 expression predicts for recurrence in margin-positive, localized prostate cancer,” Prostate, vol. 71, no. 15, pp. 1638–1645, 2011. View at Publisher · View at Google Scholar · View at Scopus
  170. S. Minner, C. Wittmer, M. Graefen et al., “High level PSMA expression is associated with early psa recurrence in surgically treated prostate cancer,” Prostate, vol. 71, no. 3, pp. 281–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  171. G. L. Wright, C. Haley, M. L. Beckett, and P. F. Schellhammer, “Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues,” Urologic Oncology, vol. 1, no. 1, pp. 18–28, 1995. View at Publisher · View at Google Scholar · View at Scopus
  172. E. Lovrić, Z. Gatalica, E. Eyzaguirre, and B. Krušlin, “Expression of maspin and glutathionine-S-transferase-π in normal human prostate and prostatic carcinomas,” Applied Immunohistochemistry and Molecular Morphology, vol. 18, no. 5, pp. 429–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. M. Goel, D. Agrawal, S. Natu, and A. Goel, “Hepsin immunohistochemical expression in prostate cancer in relation to Gleason's grade and serum prostate specific antigen,” Indian Journal of Pathology and Microbiology, vol. 54, no. 3, pp. 476–481, 2011. View at Publisher · View at Google Scholar · View at Scopus
  174. G. Pace, R. Pomante, and C. Vicentini, “Hepsin in the diagnosis of prostate cancer,” MinErva Urologica E NEfrologica, vol. 4, pp. 143–148, 2012.
  175. S. Machtens, J. Serth, C. Bokemeyer et al., “Expression of the p53 and Maspin protein in primary prostate cancer: correlation with clinical features,” International Journal of Cancer, vol. 95, no. 5, pp. 337–342, 2001.
  176. Z. Chen, Z. Fan, J. E. McNeal et al., “Hepsin and maspin are inversely expressed in laser capture microdissectioned prostate cancer,” Journal of Urology, vol. 169, no. 4, pp. 1316–1319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  177. T. R. Johnson, S. Koul, B. Kumar et al., “Loss of PDEF, a prostate-derived Ets factor is associated with aggressive phenotype of prostate cancer: regulation of MMP 9 by PDEF,” Molecular Cancer, vol. 9, article 148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. L. Zhang, J. Shi, J. Feng, H. Klocker, C. Lee, and J. Zhang, “Type IV collagenase (matrix metalloproteinase-2 and -9) in prostate cancer,” Prostate Cancer and Prostatic Diseases, vol. 7, no. 4, pp. 327–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  179. A. Ghadersohi, S. Sharma, S. Zhang et al., “Prostate-derived Ets transcription factor (PDEF) is a potential prognostic marker in patients with prostate cancer,” Prostate, vol. 71, no. 11, pp. 1178–1188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  180. Y. Tsujimoto, N. Nonomura, H. Takayama et al., “Utility of immunohistochemical detection of prostate-specific Ets for the diagnosis of benign and malignant prostatic epithelial lesions,” International Journal of Urology, vol. 9, no. 3, pp. 167–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  181. A. Paju, K. Hotakainen, Y. Cao et al., “Increased expression of tumor-associated trypsin inhibitor, TATI, in prostate cancer and in androgen-independent 22Rv1 cells,” European Urology, vol. 52, no. 6, pp. 1670–1681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  182. K. A. Leinonen, T. T. Tolonen, H. Bracken et al., “Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancer,” Clinical Cancer Research, vol. 16, no. 10, pp. 2845–2851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  183. E. S. Antonarakis, D. Keizman, Z. Zhang et al., “An immunohistochemical signature comprising PTEN, MYC, and Ki67 predicts progression in prostate cancer patients receiving adjuvant docetaxel after prostatectomy,” Cancer, vol. 118, no. 24, pp. 6063–6071, 2012. View at Publisher · View at Google Scholar
  184. R. M. Yang, J. Naitoh, M. Murphy et al., “Low p27 expression predicts poor disease-free survival in patients with prostate cancer,” Journal of Urology, vol. 159, no. 3, pp. 941–945, 1998. View at Publisher · View at Google Scholar · View at Scopus
  185. K. Li, M. Chen, J. Situ et al., “Role of co-expression of c-Myc, EZH2 and p27 in prognosis of prostate cancer patients after surgery,” Chinese Medical Journal, vol. 126, no. 1, pp. 82–87, 2013.
  186. S. C. Kudahetti, G. Fisher, L. Ambroisine et al., “Immunohistochemistry for p16, but not Rb or p21, is an independent predictor of prognosis in conservatively treated, clinically localised prostate cancer,” Pathology, vol. 42, no. 6, pp. 519–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. A. Chakravarti, M. DeSilvio, M. Zhang et al., “Prognostic value of p16 in locally advanced prostate cancer: a study based on Radiation Therapy Oncology Group protocol 9202,” Journal of Clinical Oncology, vol. 25, no. 21, pp. 3082–3089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  188. M. Kumano, H. Miyake, M. Muramaki, J. Furukawa, A. Takenaka, and M. Fujisawa, “Expression of urokinase-type plasminogen activator system in prostate cancer: correlation with clinicopathological outcomes in patients undergoing radical prostatectomy,” Urologic Oncology, vol. 27, no. 2, pp. 180–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. C. Thomas, C. Wiesner, S. W. Melchior et al., “Urokinase-plasminogen-activator receptor expression in disseminated tumour cells in the bone marrow and peripheral blood of patients with clinically localized prostate cancer,” BJU International, vol. 104, no. 1, pp. 29–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  190. N. Pértega-Gomes, J. R. Vizcaíno, C. Gouveia et al., “Monocarboxylate transporter 2 (MCT2) as putative biomarker in prostate cancer,” Prostate, vol. 73, no. 3, pp. 763–769, 2013. View at Publisher · View at Google Scholar
  191. X. Zhang, C. Morrissey, S. Sun et al., “Androgen receptor variants occur frequently in castration resistant prostate cancer metastases,” PLoS ONE, vol. 6, no. 11, Article ID e27970, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. A. R. Girvan, P. Chang, I. Van Huizen et al., “Increased intratumoral expression of prostate secretory protein of 94 amino acids predicts for worse disease recurrence and progression after radical prostatectomy in patients with prostate cancer,” Urology, vol. 65, no. 4, pp. 719–723, 2005. View at Publisher · View at Google Scholar · View at Scopus
  193. S. Laitinen, P. M. Martikainen, T. Tolonen, J. Isola, T. L. J. Tammela, and T. Visakorpi, “EZH2, Ki-67 and MCM7 are prognostic markers in prostatectomy treated patients,” International Journal of Cancer, vol. 122, no. 3, pp. 595–602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  194. P. A. Cornford, A. R. Dodson, K. F. Parsons et al., “Heat shock protein expression independently predicts clinical outcome in prostate cancer,” Cancer Research, vol. 60, no. 24, pp. 7099–7105, 2000. View at Scopus
  195. C. S. Foster, A. R. Dodson, L. Ambroisine et al., “Hsp-27 expression at diagnosis predicts poor clinical outcome in prostate cancer independent of ETS-gene rearrangement,” British Journal of Cancer, vol. 101, no. 7, pp. 1137–1144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. S. Minner, B. Jessen, L. Stiedenroth et al., “Low level Her2 overexpression is associated with rapid tumor cell proliferation and poor prognosis in prostate cancer,” Clinical Cancer Research, vol. 16, no. 5, pp. 1553–1560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. Y. Yamada, K. Nakamura, S. Aoki et al., “An immunohistochemical study of chromogranin A and human epidermal growth factor-2 expression using initial prostate biopsy specimens from patients with bone metastatic prostate cancer,” BJU International, vol. 99, no. 1, pp. 189–195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  198. B. Gurel, T. Z. Ali, E. A. Montgomery et al., “NKX3.1 as a marker of prostatic origin in metastatic tumors,” American Journal of Surgical Pathology, vol. 34, no. 8, pp. 1097–1105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  199. S. F. Shariat, Y. Lotan, H. Saboorian et al., “Survivin expression is associated with features of biologically aggressive prostate carcinoma,” Cancer, vol. 100, no. 4, pp. 751–757, 2004. View at Publisher · View at Google Scholar · View at Scopus
  200. M. Zhang, A. Ho, E. H. Hammond et al., “Prognostic value of survivin in locally advanced prostate cancer: study based on RTOG 8610,” International Journal of Radiation Oncology Biology Physics, vol. 73, no. 4, pp. 1033–1042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  201. L. Seiz, M. Kotzsch, N. I. Grebenchtchikov et al., “Polyclonal antibodies against kallikrein-related peptidase 4 (KLK4): immunohistochemical assessment of KLK4 expression in healthy tissues and prostate cancer,” Biological Chemistry, vol. 391, no. 4, pp. 391–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  202. K. A. Iczkowski, C. G. Pantazis, D. H. McGregor, Y. Wu, and O. W. Tawfik, “Telomerase reverse transcriptase subunit immunoreactivity: a marker for high-grade prostate carcinoma,” Cancer, vol. 95, no. 12, pp. 2487–2493, 2002. View at Publisher · View at Google Scholar · View at Scopus
  203. J. Tang, Z. Wang, X. Li, J. Li, and H. Shi, “Human telomerase reverse transcriptase expression correlates with vascular endothelial growth factor-promoted tumor cell proliferation in prostate cancer,” Artificial Cells, Blood Substitutes, and Biotechnology, vol. 36, no. 2, pp. 83–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  204. A. S. Bjartell, H. Al-Ahmadie, A. M. Serio et al., “Association of cysteine-rich secretory protein 3 and β-microseminoprotein with outcome after radical prostatectomy,” Clinical Cancer Research, vol. 13, no. 14, pp. 4130–4138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  205. K. Gyftopoulos, K. Vourda, G. Sakellaropoulos, P. Perimenis, A. Athanasopoulos, and E. Papadaki, “The angiogenic switch for vascular endothelial growth factor-a and cyclooxygenase-2 in prostate carcinoma: correlation with microvessel density, androgen receptor content and Gleason grade,” Urologia Internationalis, vol. 87, no. 4, pp. 464–469, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. T. T. Tomiá, H. Gustavsson, W. Wang, K. Jennbacken, K. Welén, and J. E. Damber, “Castration resistant prostate cancer is associated with increased blood vessel stabilization and elevated levels of VEGF and Ang-2,” Prostate, vol. 72, no. 7, pp. 705–712, 2012. View at Publisher · View at Google Scholar · View at Scopus
  207. D. C. Weber, J. C. Tille, C. Combescure et al., “The prognostic value of expression of HIF1α, EGFR and VEGF-A, in localized prostate cancer for intermediate- and high-risk patients treated with radiation therapy with or without androgen deprivation therapy,” Results Radiation Oncology, vol. 7, article 66, 2012. View at Publisher · View at Google Scholar
  208. W. K. B. Ranasinghe, L. Xiao, S. Kovac et al., “The role of hypoxia-inducible factor 1α in determining the properties of castrate-resistant prostate cancers,” PLoS ONE, vol. 8, no. 1, Article ID e54251, 2013. View at Publisher · View at Google Scholar