About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 287638, 9 pages
http://dx.doi.org/10.1155/2013/287638
Research Article

Biosynthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticles Using a Novel Nocardiopsis sp. MBRC-1

1Marine Biotechnology Laboratory, Department of Chemistry and Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea
2Department of Chemistry and Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea
3Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu 608 502, India

Received 4 May 2013; Revised 18 June 2013; Accepted 20 June 2013

Academic Editor: Maria Alice Zarur Coelho

Copyright © 2013 Panchanathan Manivasagan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Albrecht, C. W. Evans, and C. L. Raston, “Green chemistry and the health implications of nanoparticles,” Green Chemistry, vol. 8, no. 5, pp. 417–432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. F. Chater, “Genetics of differentiation in Streptomyces,” Annual Review of Microbiology, vol. 47, pp. 685–713, 1993. View at Scopus
  3. S. Sadhasivam, P. Shanmugam, and K. Yun, “Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms,” Colloids and Surfaces B, vol. 81, no. 1, pp. 358–362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sadhasivam, P. Shanmugam, M. Veerapandian, R. Subbiah, and K. Yun, “Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties,” BioMetals, vol. 25, no. 2, pp. 351–360, 2011.
  5. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annual Review of Physical Chemistry, vol. 58, pp. 267–297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, “A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups,” Nature, vol. 408, no. 6808, pp. 67–69, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. P. K. Jain, I. H. ElSayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today, vol. 2, no. 1, pp. 18–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Yu, “Formation of colloidal silver nanoparticles stabilized by Na+-poly(γ-glutamic acid)-silver nitrate complex via chemical reduction process,” Colloids and Surfaces B, vol. 59, no. 2, pp. 171–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Mallick, M. J. Witcomb, and M. S. Scurrell, “Self-assembly of silver nanoparticles in a polymer solvent: Formation of a nanochain through nanoscale soldering,” Materials Chemistry and Physics, vol. 90, no. 2-3, pp. 221–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y.-C. Liu and L.-H. Lin, “New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods,” Electrochemistry Communications, vol. 6, no. 11, pp. 1163–1168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. B. Smetana, K. J. Klabunde, and C. M. Sorensen, “Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation,” Journal of Colloid and Interface Science, vol. 284, no. 2, pp. 521–526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kowshik, S. Ashtaputre, S. Kharrazi et al., “Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3,” Nanotechnology, vol. 14, no. 1, pp. 95–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Senapati, A. Ahmad, M. I. Khan, M. Sastry, and R. Kumar, “Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles,” Small, vol. 1, no. 5, pp. 517–520, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, and A. Nohi, “Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach,” Process Biochemistry, vol. 42, no. 5, pp. 919–923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Liong, B. France, K. A. Bradley, and J. I. Zink, “Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles,” Advanced Materials, vol. 21, no. 17, pp. 1684–1689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. K.-H. Cho, J.-E. Park, T. Osaka, and S.-G. Park, “The study of antimicrobial activity and preservative effects of nanosilver ingredient,” Electrochimica Acta, vol. 51, no. 5, pp. 956–960, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Wei, C. Chen, B. Han, and E. Wang, “Enzyme colorimetric assay using unmodified silver nanoparticles,” Analytical Chemistry, vol. 80, no. 18, pp. 7051–7055, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. K. Singh, M. Talat, D. P. Singh, and O. N. Srivastava, “Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1667–1675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. R. Shahverdi, A. Fakhimi, H. R. Shahverdi, and S. Minaian, “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli,” Nanomedicine, vol. 3, no. 2, pp. 168–171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ingle, M. Rai, A. Gade, and M. Bawaskar, “Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles,” Journal of Nanoparticle Research, vol. 11, no. 8, pp. 2079–2085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Bai, B. Yang, C. Chai, G. Yang, W. Jia, and Z. Yi, “Green synthesis of silver nanoparticles using Rhodobacter sphaeroides,” World Journal of Microbiology and Biotechnology, vol. 27, no. 11, pp. 2723–2728, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Durán, P. D. Marcato, O. L. Alves, G. I. H. De Souza, and E. Esposito, “Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains,” Journal of Nanobiotechnology, vol. 3, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Klaus, R. Joerger, E. Olsson, and C. Granqvist, “Silver-based crystalline nanoparticles, microbially fabricated,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13611–13614, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Arora, J. Jain, J. M. Rajwade, and K. M. Paknikar, “Cellular responses induced by silver nanoparticles: in vitro studies,” Toxicology Letters, vol. 179, no. 2, pp. 93–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan et al., “Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli,” Colloids and Surfaces B, vol. 74, no. 1, pp. 328–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Pal, Y. K. Tak, and J. M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,” Applied and Environmental Microbiology, vol. 73, no. 6, pp. 1712–1720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. K. B. Holt and A. J. Bard, “Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+,” Biochemistry, vol. 44, no. 39, pp. 13214–13223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Sastry, A. Ahmad, M. Islam Khan, and R. Kumar, “Biosynthesis of metal nanoparticles using fungi and actinomycete,” Current Science, vol. 85, no. 2, pp. 162–170, 2003. View at Scopus
  30. P. Mukherjee, A. Ahmad, D. Mandal et al., “Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis,” Nano Letters, vol. 1, no. 10, pp. 515–519, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Sivalingam, J. J. Antony, D. Siva, S. Achiraman, and K. Anbarasu, “Mangrove Streptomyces sp. BDUKAS10 as nanofactory for fabrication of bactericidal silver nanoparticles,” Colloids and Surfaces A, vol. 98, pp. 12–17, 2012.
  32. S. D. Sarker, L. Nahar, and Y. Kumarasamy, “Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals,” Methods, vol. 42, no. 4, pp. 321–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. P. Lechevalier and H. Lechevalier, “Chemical composition as a criterion in the classification of aerobic actinomycetes,” International Journal of Systematic Bacteriology, vol. 20, no. 4, pp. 435–443, 1970.
  34. A. V. Kirthi, A. A. Rahuman, C. Jayaseelan, et al., “Novel approach to synthesis silver nanoparticles using plant pathogenic fungi, Puccinia graminis,” Materials Letters, vol. 81, pp. 61–72, 2013.
  35. C. G. Kumar and S. K. Mamidyala, “Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa,” Colloids and Surfaces B, vol. 84, no. 2, pp. 462–466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Krishnaraj, E. G. Jagan, S. Rajasekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan, “Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens,” Colloids and Surfaces B, vol. 76, no. 1, pp. 50–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Magudapathy, P. Gangopadhyay, B. K. Panigrahi, K. G. M. Nair, and S. Dhara, “Electrical transport studies of Ag nanoclusters embedded in glass matrix,” Physica B: Condensed Matter, vol. 299, no. 1-2, pp. 142–146, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah, and G. Sangiliyandi, “Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis,” Materials Letters, vol. 62, no. 29, pp. 4411–4413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Panáček, L. Kvítek, R. Prucek et al., “Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity,” Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16248–16253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. K.J. Kim, W. S. Sung, B. K. Suh et al., “Antifungal activity and mode of action of silver nano-particles on Candida albicans,” BioMetals, vol. 22, no. 2, pp. 235–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. W.-R. Li, X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, Y. Ou-Yang, and Y.-B. Chen, “Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli,” Applied Microbiology and Biotechnology, vol. 85, no. 4, pp. 1115–1122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. I. Sriram, S. B. M. Kanth, K. Kalishwaralal, and S. Gurunathan, “Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model,” International Journal of Nanomedicine, vol. 5, no. 1, pp. 753–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Safaepour, A. R. Shahverdi, H. R. Shahverdi, M. R. Khorramizadeh, and A. R. Gohari, “Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against Fibrosarcoma-Wehi 164,” Avicenna Journal of Medical Biotechnology, vol. 1, no. 2, pp. 111–115, 2009.