About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 292506, 11 pages
http://dx.doi.org/10.1155/2013/292506
Research Article

Craniosynostosis-Associated Fgfr2C342Y Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation

1Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
2Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Jung Gu, Daegu, Republic of Korea

Received 11 January 2013; Revised 18 March 2013; Accepted 29 March 2013

Academic Editor: Zhao Lin

Copyright © 2013 J. Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Renier, E. Lajeunie, E. Arnaud, and D. Marchac, “Management of craniosynostoses,” Child's Nervous System, vol. 16, no. 10-11, pp. 645–658, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Seruya, A. Oh, M. J. Boyajian, J. C. Posnick, and R. F. Keating, “Treatment for delayed presentation of sagittal synostosis: challenges pertaining to occult intracranial hypertension—clinical article,” Journal of Neurosurgery, vol. 8, no. 1, pp. 40–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. G. M. Morriss-Kay and A. O. M. Wilkie, “Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies,” Journal of Anatomy, vol. 207, no. 5, pp. 637–653, 2005. View at Scopus
  4. S. Kreiborg, “Craniofacial growth in plagiocephaly and Crouzon syndrome,” Scandinavian Journal of Plastic and Reconstructive Surgery, vol. 15, no. 3, pp. 187–197, 1981. View at Scopus
  5. J. Liu, H. K. Na, E. Wang, and N. E. Hatch, “Further analysis of the crouzon mouse: effects of the FGFR2C342Y mutation are cranial bone dependent,” Calcified Tissue International, vol. 92, no. 5, pp. 451–466, 2013. View at Publisher · View at Google Scholar
  6. K. Okajima, L. K. Robinson, M. A. Hart et al., “Ocular anterior chamber dysgenesis in craniosynostosis syndromes with a fibroblast growth factor receptor 2 mutation,” American Journal of Medical Genetics, vol. 85, no. 2, pp. 160–170, 1999.
  7. P. Stavrou, S. Sgouros, H. E. Willshaw, J. H. Goldin, A. D. Hockley, and M. J. C. Wake, “Visual failure caused by raised intracranial pressure in craniosynostosis,” Child's Nervous System, vol. 13, no. 2, pp. 64–67, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Abe, T. Ikota, M. Akino, K. Kitami, and M. Tsuru, “Functional prognosis of surgical treatment of craniosynostosis,” Child's Nervous System, vol. 1, no. 1, pp. 53–61, 1985. View at Scopus
  9. P. S. Shah, K. Siriwardena, G. Taylor et al., “Sudden infant death in a patient with FGFR3 P250R mutation,” American Journal of Medical Genetics A, vol. 140, no. 24, pp. 2794–2796, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Cohen and S. Kreiborg, “Upper and lower airway compromise in the Apert syndrome,” American Journal of Medical Genetics, vol. 44, no. 1, pp. 90–93, 1992. View at Scopus
  11. S. A. Rasmussen, M. M. Yazdy, J. L. Frías, and M. A. Honein, “Priorities for public health research on craniosynostosis: summary and recommendations from a Centers for Disease Control and Prevention-sponsored meeting,” American Journal of Medical Genetics A, vol. 146, no. 2, pp. 149–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. K. Williams, S. R. Cohen, F. D. Burstein, R. Hudgins, W. Boydston, and C. Simms, “A longitudinal, statistical study of reoperation rates in craniosynostosis,” Plastic and Reconstructive Surgery, vol. 100, no. 2, pp. 305–310, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Reardon, R. M. Winter, P. Rutland, L. J. Pulleyn, B. M. Jones, and S. Malcolm, “Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome,” Nature Genetics, vol. 8, no. 1, pp. 98–103, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Schell, A. Hehr, G. J. Feldman et al., “Mutations in FGFR1 and FGFR2 cause familial and sporadic Pfeiffer syndrome,” Human Molecular Genetics, vol. 4, no. 3, pp. 323–328, 1995. View at Scopus
  15. A. O. M. Wilkie, S. F. Slaney, M. Oldridge et al., “Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome,” Nature Genetics, vol. 9, no. 2, pp. 165–172, 1995. View at Scopus
  16. O. A. Ibrahimi, F. Zhang, A. V. Eliseenkova, R. J. Linhardt, and M. Mohammadi, “Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity,” Human Molecular Genetics, vol. 13, no. 1, pp. 69–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. N. E. Hatch, “FGF signaling in craniofacial biological control and pathological craniofacial development,” Critical Reviews in Eukaryotic Gene Expression, vol. 20, no. 4, pp. 295–311, 2010. View at Scopus
  18. J. Andersen, H. D. Burns, P. Enriquez-Harris, A. O. M. Wilkie, and J. K. Heath, “Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand,” Human Molecular Genetics, vol. 7, no. 9, pp. 1475–1483, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Yu, A. B. Herr, G. Waksman, and D. M. Ornitz, “Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14536–14541, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. K. M. Neilson and R. E. Friesel, “Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome,” Journal of Biological Chemistry, vol. 270, no. 44, pp. 26037–26040, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Shukla, X. Coumoul, R. H. Wang, H. S. Kim, and C. X. Deng, “RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis,” Nature Genetics, vol. 39, no. 9, pp. 1145–1150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. V. P. Eswarakumar, F. Özcan, E. D. Lew et al., “Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 49, pp. 18603–18608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. G. M. Cooper, E. L. Durham, J. J. Cray, M. I. Siegel, J. E. Losee, and M. P. Mooney, “Tissue interactions between craniosynostotic dura mater and bone,” Journal of Craniofacial Surgery, vol. 23, no. 3, pp. 919–924, 2012.
  24. B. U. Ang, R. M. Spivak, H. D. Nah, and R. E. Kirschner, “Dura in the pathogenesis of syndromic craniosynostosis: fibroblast growth factor receptor 2 mutations in dural cells promote osteogenic proliferation and differentiation of osteoblasts,” Journal of Craniofacial Surgery, vol. 21, no. 2, pp. 462–467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. B. J. Slater, M. D. Kwan, D. M. Gupta, R. R. Amasha, D. C. Wan, and M. T. Longaker, “Dissecting the influence of regional dura mater on cranial suture biology,” Plastic and Reconstructive Surgery, vol. 122, no. 1, pp. 77–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Mangasarian, Y. Li, A. Mansukhani, and C. Basilico, “Mutation associated with Crouzon syndrome causes ligand-independent dimerization and activation of FGF receptor-2,” Journal of Cellular Physiology, vol. 172, no. 1, pp. 117–125, 1997.
  27. A. Lomri, J. Lemonnier, M. Hott et al., “Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome,” Journal of Clinical Investigation, vol. 101, no. 6, pp. 1310–1317, 1998. View at Scopus
  28. G. Holmes, G. Rothschild, U. B. Roy, C. X. Deng, A. Mansukhani, and C. Basilico, “Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology,” Developmental Biology, vol. 328, no. 2, pp. 273–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Online Mendelian Inheritance in Man and OMIM, MIM Number 123500, Johns Hopkins University, Baltimore, Md, USA, 2011, http://omim.org/entry/123500.
  30. S. Kreiborg, “Crouzon Syndrome. A clinical and roentgencephalometric study,” Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, vol. 18, pp. 1–198, 1981.
  31. T. W. Proudman, M. H. Moore, A. H. Abbott, and D. J. David, “Noncraniofacial manifestations of Crouzon's disease,” Journal of Craniofacial Surgery, vol. 5, no. 4, pp. 218–222, 1994.
  32. V. P. Eswarakumar, M. C. Horowitz, R. Locklin, G. M. Morriss-Kay, and P. Lonai, “A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 34, pp. 12555–12560, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nature Reviews Molecular Cell Biology, vol. 8, no. 10, pp. 839–845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. L. Bouxsein, S. K. Boyd, B. A. Christiansen, R. E. Guldberg, K. J. Jepsen, and R. Müller, “Guidelines for assessment of bone microstructure in rodents using micro-computed tomography,” Journal of Bone and Mineral Research, vol. 25, no. 7, pp. 1468–1486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. N. E. Hatch, Y. Li, and R. T. Franceschi, “FGF2 stimulation of the pyrophosphate-generating enzyme, PC-1, in pre-osteoblast cells is mediated by RUNX2,” Journal of Bone and Mineral Research, vol. 24, no. 4, pp. 652–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. H. Krebsbach, K. Gu, R. T. Franceschi, and R. B. Rutherford, “Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo,” Human Gene Therapy, vol. 11, no. 8, pp. 1201–1210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. C. A. Perlyn, V. B. DeLeon, C. Babbs et al., “The craniofacial phenotype of the Crouzon mouse: analysis of a model for syndromic craniosynostosis using three-dimensional microCT,” Cleft Palate-Craniofacial Journal, vol. 43, no. 6, pp. 740–747, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Birgersdotter, R. Sandberg, and I. Ernberg, “Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems,” Seminars in Cancer Biology, vol. 15, no. 5, pp. 405–412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. U. A. Gurkan, V. Kishore, K. W. Condon, T. M. Bellido, and O. Akkus, “A scaffold-free multicellular three-dimensional in vitro model of osteogenesis,” Calcified Tissue International, vol. 88, no. 5, pp. 388–401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. P. R. Baraniak and T. C. McDevitt, “Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential,” Cell and Tissue Research, vol. 347, no. 3, pp. 701–711, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Murshed, D. Harmey, J. L. Millán, M. D. McKee, and G. Karsenty, “Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone,” Genes and Development, vol. 19, no. 9, pp. 1093–1104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Chen, D. Li, C. Li, A. Engel, and C. X. Deng, “A Ser250Trp substitution in mouse fibroblast growth factor receptor 2 (Fgfr2) results in craniosynostosis,” Bone, vol. 33, no. 2, pp. 169–178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. S. R. F. Twigg, C. Healy, C. Babbs et al., “Skeletal analysis of the Fgfr3P244R mouse, a genetic model for the muenke craniosynostosis syndrome,” Developmental Dynamics, vol. 238, no. 2, pp. 331–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Komatsu, P. B. Yu, N. Kamiya et al., “Augmentation of Smad-dependent BMP signaling in neural crest cells causes craniosynostosis in mice,” Journal of Bone and Mineral Research, 2012. View at Publisher · View at Google Scholar
  45. G. Holmes, G. Rothschild, U. B. Roy, C. X. Deng, A. Mansukhani, and C. Basilico, “Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology,” Developmental Biology, vol. 328, no. 2, pp. 273–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Yin, X. Du, C. Li et al., “A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis,” Bone, vol. 42, no. 4, pp. 631–643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. X. Zhou, X. Xu, L. Chen, C. Li, S. G. Brodie, and C. X. Deng, “A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures,” Human Molecular Genetics, vol. 9, no. 13, pp. 2001–2008, 2000. View at Scopus
  48. A. Fragale, M. Tartaglia, S. Bernardini et al., “Decreased proliferation and altered differentiation in osteoblasts from genetically and clinically distinct craniosynostotic disorders,” American Journal of Pathology, vol. 154, no. 5, pp. 1465–1477, 1999. View at Scopus
  49. A. Mansukhani, P. Bellosta, M. Sahni, and C. Basilico, “Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts,” Journal of Bone and Mineral Research, vol. 149, pp. 1297–1308, 2000.
  50. Online Mendelian Inheritance in Man and OMIM, MIM Number 307800, Johns Hopkins University, Baltimore, Md, USA, 2011, http://omim.org/entry/307800.
  51. W. A. Roy, R. J. Iorio, and G. A. Meyer, “Craniosynostosis in vitamin D-resistant rickets. A mouse model,” Journal of Neurosurgery, vol. 55, no. 2, pp. 265–271, 1981. View at Scopus
  52. Y. Sabbagh, A. O. Jones, and H. S. Tenenhouse, “PHEXdb, a locus-specific database for mutations causing X-linked hypophosphatemia,” Human Mutation, vol. 16, pp. 1–6, 2000.
  53. G. Liang, L. D. Katz, K. L. Insogna, T. O. Carpenter, and C. M. MacIca, “Survey of the enthesopathy of X-linked hypophosphatemia and its characterization in Hyp mice,” Calcified Tissue International, vol. 85, no. 3, pp. 235–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Online Mendelian Inheritance in Man and OMIM, MIM Number 171760, Johns Hopkins University, Baltimore, Md, USA, 2009, http://omim.org/entry/171760.
  55. D. Wenkert, M. Benigno, K. Mack, W. McAlister, S. Mumm, and M. Whyte, “Hypophosphatasia: prevalence of clinical problems in 175 pediatric patients,” in Proceedings of the American Society for Bone and Mineral Research 31st Annual Meeting, Denver, Colo, USA, 2009, Abstract A09001674.
  56. M. P. Whyte, “Physiological role of alkaline phosphatase explored in hypophosphatasia,” Annals of the New York Academy of Sciences, vol. 1192, pp. 190–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Mornet, “Hypophosphatasia,” Orphanet Journal of Rare Diseases, vol. 2, p. 40, 2007.
  58. S. Narisawa, N. Fröhlander, and J.L. Millán, “Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasi,” Developmental Dynamics, vol. 208, pp. 432–446, 1997.
  59. A. K. Shetty, T. Thomas, J. Rao, and A. Vargas, “Rickets and secondary craniosynostosis associated with long-term antacid use in an infant,” Archives of Pediatrics and Adolescent Medicine, vol. 152, no. 12, pp. 1243–1245, 1998. View at Scopus