About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 294679, 11 pages
http://dx.doi.org/10.1155/2013/294679
Research Article

Comparative Study of Various Delivery Methods for the Supply of Alpha-Ketoglutarate to the Neural Cells for Tissue Engineering

1Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
2Thematic Unit of Excellence on Nanoscience and Nanotechnology, Indian Institute of Technology Kanpur, Kanpur 208016, India

Received 6 April 2013; Accepted 7 June 2013

Academic Editor: Juergen Buenger

Copyright © 2013 Tanushree Vishnoi and Ashok Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Snyder, “Neurotransmitters, receptors, and second messengers galore in 40 years,” Journal of Neuroscience, vol. 29, no. 41, pp. 12717–12721, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. P. Shank and G. Campbell, “Glutamine and alpha-ketoglutarate uptake and metabolism by nerve terminal enriched material from mouse cerebellum,” Neurochemical Research, vol. 7, no. 5, pp. 601–616, 1982. View at Scopus
  3. M. Nedergaard, T. Takano, and A. J. Hansen, “Beyond the role of glutamate as a neurotransmitter,” Nature Reviews Neuroscience, vol. 3, no. 9, pp. 748–755, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. D. Varma and K. R. Hegde, “Effect of α-ketoglutarate against selenite cataract formation,” Experimental Eye Research, vol. 79, no. 6, pp. 913–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. E. D. Son, G. H. Choi, H. Kim, B. Lee, I. S. Chang, and J. S. Hwang, “Alpha-ketoglutarate stimulates procollagen production in cultured human dermal fibroblasts, and decreases UVB-induced wrinkle formation following topical application on the dorsal skin of hairless mice,” Biological and Pharmaceutical Bulletin, vol. 30, no. 8, pp. 1395–1399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Nilsang, A. Kumar, and S. K. Rakshit, “Effect of α-ketoglutarate on monoclonal antibody production of hybridoma cell lines in serum-free and serum-containing medium,” Applied Biochemistry and Biotechnology, vol. 151, no. 2-3, pp. 489–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. A. Silva, C. Richard, M. Bessodes, D. Scherman, and O.-W. Merten, “Growth factor delivery approaches in hydrogels,” Biomacromolecules, vol. 10, no. 1, pp. 9–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Pavlukhina and S. Sukhishvili, “Polymer assemblies for controlled delivery of bioactive molecules from surfaces,” Advanced Drug Delivery Reviews, vol. 63, no. 9, pp. 822–836, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Choi, S. Y. Kim, S. H. Kim, K.-S. Lee, C. Kim, and Y. Byun, “Long-term delivery of all-trans-retinoic acid using biodegradable PLLA/PEG-PLLA blended microspheres,” International Journal of Pharmaceutics, vol. 215, no. 1-2, pp. 67–81, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Edlund and A.-C. Albertsson, “Degradable polymer microspheres for controlled drug delivery,” Advances in Polymer Science, vol. 157, pp. 67–112, 2002. View at Scopus
  11. J. H. Park, M. Ye, and K. Park, “Biodegradable polymers for microencapsulation of drugs,” Molecules, vol. 10, no. 1, pp. 146–161, 2005. View at Scopus
  12. S. Ketie, H. K. Leo, and L. W. K. Menno, “Polymeric microspheres for medical applications,” Materials, vol. 3, pp. 3537–3564, 2010. View at Publisher · View at Google Scholar
  13. D. Singh, V. Nayak, and A. Kumar, “Proliferation of myoblast skeletal cells on three-dimensional supermacroporous cryogels,” International Journal of Biological Sciences, vol. 6, no. 4, pp. 371–381, 2010. View at Scopus
  14. M. P. Fatima, I. Y. Galaev, and B. Mattiason, “Production and properties of cryogels by radical polymerization,” in Macroporous Polymers.: Production Properties and Biotechnological/Biomedical Applications, B. Mattiasson, A. Kumar, and I. Y. Galaev, Eds., pp. 23–47, CRC Press, Boca Raton, Fla, USA, 2009.
  15. S. Bhat, A. Tripathi, and A. Kumar, “Supermacroprous chitosan-agarose-gelatin cryogels: In vitro characterization and in vivo assessment for cartilage tissue engineering,” Journal of the Royal Society Interface, vol. 8, no. 57, pp. 540–554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Kathuria, A. Tripathi, K. K. Kar, and A. Kumar, “Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering,” Acta Biomaterialia, vol. 5, no. 1, pp. 406–418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Dhawan, A. K. Singla, and V. R. Sinha, “Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods,” AAPS PharmSciTech, vol. 5, no. 4, article e67, 2004. View at Scopus
  18. K. Mladenovskat, E. Janevic, M. G. Dodov, et al., “BSA—loaded gelatin microspheres: comparative studies on biodegradation and drug release in presence of collagenase and trypsin,” Macedonian Pharamaceutical Bulletin, vol. 48, no. 1-2, pp. 9–14, 2002.
  19. C. Long, “A general method for the estimation of a-keto-acids, and its application to a-keto-acid metabolism in pigeon brain,” Biochemical Journal, vol. 36, pp. 807–810, 1942.
  20. T. Vishnoi and A. Kumar, “Conducting cryogel scaffold as a potential biomaterial for cell stimulation and proliferation,” Journal of Material Science: Materials in Medicine, vol. 24, no. 2, pp. 447–459, 2013. View at Publisher · View at Google Scholar
  21. E. Jain, A. A. Karande, and A. Kumar, “Supermacroporous polymer-based cryogel bioreactor for monoclonal antibody production in continuous culture using hybridoma cells,” Biotechnology Progress, vol. 27, no. 1, pp. 170–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. B. A. Donzanti and B. K. Yamamoto, “An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates,” Life Sciences, vol. 43, no. 11, pp. 913–922, 1988. View at Scopus
  23. S. Nilsang, V. Nehru, F. M. Plieva et al., “Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles,” Biotechnology Progress, vol. 24, no. 5, pp. 1122–1131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Singh, T. Vishnoi, A. Tripathi, and A. Kumar, “Effect of alpha keto glutarate onn growth and metabolism of cells cultured on three dimensional cryogel matrix,” International Journal of Biological Sciences, vol. 9, no. 5, pp. 521–530, 2013. View at Publisher · View at Google Scholar
  25. K. Yao, Y. Yin, X. Li et al., “Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells,” Amino Acids, vol. 42, no. 6, pp. 2491–2500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Schulze-Lohoff, S. Zanner, A. Ogilvie, and R. B. Sterzel, “Extracellular ATP stimulates proliferation of cultured mesangial cells via P2-purinergic receptors,” American Journal of Physiology, vol. 263, no. 3, part 2, pp. F374–F383, 1992. View at Scopus
  27. E. J. J. van Zoelen, D. R. Twardzik, and M. J. van Oostwaard, “Neuroblastoma cells produce transforming growth factors during exponential growth in a defined hormone-free medium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 13 I, pp. 4085–4089, 1984. View at Scopus
  28. D. M. Bradham and W. E. Horton Jr., “In vivo cartilage formation from growth factor modulated articular chondrocytes,” Clinical Orthopaedics and Related Research, no. 352, pp. 239–249, 1998. View at Scopus
  29. P. Korinkova and Z. Lodin, “The metabolism of glucose of nerve cells cultivated under different conditions,” Acta Histochemica, vol. 56, no. 1, pp. 47–65, 1976. View at Scopus
  30. R. E. Fox, I. B. Hopkins, E. T. Cabacungan, and J. T. Tildon, “The role of glutamine and other alternate substrates as energy sources in the fetal rat lung type II cell,” Pediatric Research, vol. 40, no. 1, pp. 135–141, 1996. View at Scopus
  31. S. Picossi, B. R. Belitsky, and A. L. Sonenshein, “Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC,” Journal of Molecular Biology, vol. 365, no. 5, pp. 1298–1313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. G. C. Mathews and J. S. Diamond, “Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength,” Journal of Neuroscience, vol. 23, no. 6, pp. 2040–2048, 2003. View at Scopus
  33. L. K. Bak, A. Schousboe, and H. S. Waagepetersen, “The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer,” Journal of Neurochemistry, vol. 98, no. 3, pp. 641–653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Coster, R. McCauley, and J. Hall, “Glutamine: metabolism and application in nutrition support,” Asia Pacific Journal of Clinical Nutrition, vol. 13, no. 1, pp. 25–31, 2004. View at Scopus