About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 294759, 7 pages
http://dx.doi.org/10.1155/2013/294759
Research Article

In Silico Studies of C3 Metabolic Pathway Proteins of Wheat (Triticum aestivum)

1Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
2Department of Bioinformatics and Biotechnology, FBAS, International Islamic University, Islamabad, P.O. Box 44000, Pakistan

Received 23 August 2012; Revised 10 November 2012; Accepted 26 November 2012

Academic Editor: Ravindra N. Chibbar

Copyright © 2013 Muhammad Kashif Naeem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. F. Sage and R. K. Monson, C4 Plant Biology, Academic Press, New York, NY, USA, 1999.
  2. A. N. Dodd, A. M. Borland, R. P. Haslam, H. Griffiths, and K. Maxwell, “Crassulacean acid metabolism: plastic, fantastic,” Journal of Experimental Botony, vol. 53, pp. 569–580, 2002.
  3. A. R. Portis Jr and M. A. J. Parry, “Discoveries in Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective,” Photosynthesis Research, vol. 94, no. 1, pp. 121–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. T. Evans, Feeding the Ten Billion: Plants and Population Growth, Cambridge University Press, Cambridge, UK, 1998.
  5. M. D. Edgerton, “Increasing crop productivity to meet global needs for feed, food, and fuel,” Plant Physiology, vol. 149, no. 1, pp. 7–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. B. S. Gill, R. Appels, A. M. Botha-Oberholster et al., “A workshop report on wheat genome sequencing: international genome research on wheat consortium,” Genetics, vol. 168, no. 2, pp. 1087–1096, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Fiser, R. K. Do, and A. Sali, “Modeling of loops in protein structures,” Protein Science, vol. 9, no. 9, pp. 1753–1773, 2000. View at Scopus
  8. M. A. Martí-Renom, A. C. Stuart, A. Fiser, R. Sánchez, F. Melo, and A. Šali, “Comparative protein structure modeling of genes and genomes,” Annual Review of Biophysics and Biomolecular Structure, vol. 29, pp. 291–325, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Xu and D. Xu, “Protein threading using PROSPECT: design and evaluation,” Proteins, vol. 40, no. 3, pp. 343–354, 2000.
  10. R. David, M. J. Korenberg, and I. W. Hunter, “3D-1D threading methods for protein fold recognition,” Pharmacogenomics, vol. 1, no. 4, pp. 445–455, 2000.
  11. J. Skolnick, D. Kihara, and Y. Zhang, “Development and large scale benchmark testing of the PROSPECTOR 3.0 threading algorithm,” Proteins, vol. 56, no. 3, pp. 502–518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Bradley, K. Misura, and D. Baker, “Biochemistry: toward high-resolution de novo structure prediction for small proteins,” Science, vol. 309, no. 5742, pp. 1868–1871, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Klepeis, Y. Wei, M. H. Hecht, and C. A. Floudas, “Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study,” Proteins, vol. 58, no. 3, pp. 560–570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Wu, J. Skolnick, and Y. Zhang, “Ab initio modeling of small proteins by iterative TASSER simulations,” BMC Biology, vol. 5, article 17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Mukherjee, A. Szilagyi, A. Roy, and Y. Zhang, “Genome-wide protein structure prediction,” Biomedical and Life Sciences, pp. 255–279, 2011.
  16. R. M. Ewing, P. Chu, F. Elisma et al., “Large-scale mapping of human protein-protein interactions by mass spectrometry,” Molecular Systems Biology, vol. 3, article 89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Uetz, L. Glot, G. Cagney et al., “A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae,” Nature, vol. 403, no. 6770, pp. 623–627, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, “A comprehensive two-hybrid analysis to explore the yeast protein interactome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4569–4574, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Venkatraman, Y. D. Yang, L. Sael, and D. Kihara, “Protein-protein docking using region-based 3D Zernike descriptors,” BMC Bioinformatics, vol. 10, article 407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Mosca, C. Pons, J. Fernández-Recio, and P. Aloy, “Pushing structural information into the yeast interactome by high-throughput protein docking experiments,” PLoS Computational Biology, vol. 5, no. 8, Article ID e1000490, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. W. R. Pearson, “Rapid and sensitive sequence comparison with FASTP and FASTA,” Methods in Enzymology, vol. 183, pp. 63–98, 1990. View at Scopus
  22. L. Bordoli, F. Kiefer, K. Arnold, P. Benkert, J. Battey, and T. Schwede, “Protein structure homology modeling using SWISS-MODEL workspace,” Nature Protocols, vol. 4, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, “The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling,” Bioinformatics, vol. 22, no. 2, pp. 195–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Karplus, “SAM-T08, HMM-based protein structure prediction,” Nucleic Acids Research, vol. 37, no. 2, pp. W492–W497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Wu, J. Skolnick, and Y. Zhang, “Ab initio modeling of small proteins by iterative TASSER simulations,” BMC Biology, vol. 5, article 17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Zhang, “I-TASSER server for protein 3D structure prediction,” BMC Bioinformatics, vol. 9, article 40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, “PROCHECK: a program to check the stereochemical quality of protein structures,” Journal of Applied Crystallography, vol. 26, pp. 283–291, 1993.
  28. S. C. Lovell, I. W. Davis, W. B. Arendall et al., “Structure validation by Cα geometry: φ, ψ and Cβ deviation,” Proteins, vol. 50, no. 3, pp. 437–450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. D. W. Ritchie and G. J. L. Kemp, “Protein docking using spherical polar Fourier correlations,” Proteins, vol. 39, pp. 178–194, 2000.
  30. J. Macioszek, J. B. Anderson, and L. E. Anderson, “Isolation of chloroplastic phosphoglycerate kinase: kinetics of the two-enzyme phosphoglycerate kinase/glyceraldehyde-3-phosphate dehydrogenase couple,” Plant Physiology, vol. 94, no. 1, pp. 291–296, 1990. View at Scopus
  31. C. A. Raines and M. J. Paul, “Products of leaf primary carbon metabolism modulate the developmental programme determining plant morphology,” Journal of Experimental Botany, vol. 57, no. 9, pp. 1857–1862, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. M. Smith and M. Stitt, “Coordination of carbon supply and plant growth,” Plant, Cell and Environment, vol. 30, no. 9, pp. 1126–1149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. H. Steven and L. H. Joan, “Role of sucrose-phosphate synthase in sucrose metabolism in leaves,” Plant Physiology, vol. 99, no. 4, pp. 1275–1278, 1992. View at Scopus
  34. Y. Cai, D. Xie, Z. Wang, and M. Hong, “Interaction of rice bZIP protein REB with the 5′-upstream region of both rice sbe1 gene and waxy gene,” Chinese Science Bulletin, vol. 47, no. 4, pp. 310–314, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. C. A. Raines, “Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies,” Plant Physiology, vol. 155, no. 1, pp. 36–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. F. M. Banks, S. P. Driscoll, M. A. J. Parry et al., “Decrease in phosphoribulokinase activity by antisense RNA in transgenic tobacco. Relationship between photosynthesis, growth, and allocation at different nitrogen levels,” Plant Physiology, vol. 119, no. 3, pp. 1125–1136, 1999. View at Scopus
  37. C. A. Raines, “The Calvin cycle revisited,” Photosynthesis Research, vol. 75, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar
  38. M. Stitt, J. Lunn, and B. Usadel, “Arabidopsis and primary photosynthetic metabolism—more than the icing on the cake,” Plant Journal, vol. 61, no. 6, pp. 1067–1091, 2010. View at Publisher · View at Google Scholar · View at Scopus