About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 295132, 18 pages
http://dx.doi.org/10.1155/2013/295132
Review Article

IL-17 in the Rheumatologist’s Line of Sight

1UMR-CNRS 5164, Composantes Innées de la Réponse Immunitaire et de la Différenciation, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
2Département de Rhumatologie, Hôpital Pellegrin, CHU de Bordeaux, place Amélie-Raba-Léon, 33076 Bordeaux, France
3INSERM U1035–Biothérapies des maladies génétiques et cancers, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France

Received 30 April 2013; Accepted 27 June 2013

Academic Editor: Michael Greenwood

Copyright © 2013 Marie-Elise Truchetet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. C. L. Langrish, Y. Chen, W. M. Blumenschein et al., “IL-23 drives a pathogenic T cell population that induces autoimmune inflammation,” Journal of Experimental Medicine, vol. 201, no. 2, pp. 233–240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17,” Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Annunziato, L. Cosmi, V. Santarlasci et al., “Phenotypic and functional features of human Th17 cells,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1849–1861, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Dardalhon, A. Awasthi, H. Kwon et al., “IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3-effector T cells,” Nature Immunology, vol. 9, no. 12, pp. 1347–1355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Duhen, R. Geiger, D. Jarrossay, A. Lanzavecchia, and F. Sallusto, “Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells,” Nature Immunology, vol. 10, no. 8, pp. 857–863, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Rouvier, M. F. Luciani, M. G. Mattei, F. Denizot, and P. Golstein, “CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus Saimiri gene,” Journal of Immunology, vol. 150, no. 12, pp. 5445–5456, 1993. View at Scopus
  8. Z. Yao, W. C. Fanslow, M. F. Seldin et al., “Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor,” Immunity, vol. 3, no. 6, pp. 811–821, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Yao, S. L. Painter, W. C. Fanslow et al., “Human IL-17: a novel cytokine derived from T cells,” Journal of Immunology, vol. 155, no. 12, pp. 5483–5486, 1995. View at Scopus
  10. S. Aggarwal and A. L. Gurney, “IL-17: prototype member of an emerging cytokine family,” Journal of Leukocyte Biology, vol. 71, no. 1, pp. 1–8, 2002. View at Scopus
  11. S. L. Gaffen, “Structure and signalling in the IL-17 receptor family,” Nature Reviews Immunology, vol. 9, no. 8, pp. 556–567, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Toy, D. Kugler, M. Wolfson et al., “Cutting edge: interleukin 17 signals through a heteromeric receptor complex,” Journal of Immunology, vol. 177, no. 1, pp. 36–39, 2006. View at Scopus
  13. H. C. Seon, H. Park, and C. Dong, “Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor,” Journal of Biological Chemistry, vol. 281, no. 47, pp. 35603–35607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Qian, C. Liu, J. Hartupee et al., “The adaptor Act1 is required for interleukin 17—dependent signaling associated with autoimmune and inflammatory disease,” Nature Immunology, vol. 8, no. 3, pp. 247–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. K. Kolls and A. Lindén, “Interleukin-17 family members and inflammation,” Immunity, vol. 21, no. 4, pp. 467–476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Boniface, B. Blom, Y. J. Liu, and R. de Waal Malefyt, “From interleukin-23 to T-helper 17 cells: human T-helper cell differentiation revisited,” Immunological Reviews, vol. 226, no. 1, pp. 132–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Boniface, K. S. Bak-Jensen, Y. Li et al., “Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 535–548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. McGeachy and D. J. Cua, “Th17 cell differentiation: the long and winding road,” Immunity, vol. 28, no. 4, pp. 445–453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Zygmunt and M. Veldhoen, “T helper cell differentiation. More than just cytokines,” Advances in Immunology, vol. 109, pp. 159–196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Annunziato and S. Romagnani, “Mouse T helper 17 phenotype: not so different than in man after all,” Cytokine, vol. 56, no. 1, pp. 112–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Chen, C. M. Tato, L. Muul, A. Laurence, and J. J. O'Shea, “Distinct regulation of interleukin-17 in human T helper lymphocytes,” Arthritis and Rheumatism, vol. 56, no. 9, pp. 2936–2946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Volpe, N. Servant, R. Zollinger et al., “A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses,” Nature Immunology, vol. 9, no. 6, pp. 650–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Bettelli, M. Oukka, and V. K. Kuchroo, “TH-17 cells in the circle of immunity and autoimmunity,” Nature Immunology, vol. 8, no. 4, pp. 345–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Chizzolini, R. Chicheportiche, M. Alvarez et al., “Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion,” Blood, vol. 112, no. 9, pp. 3696–3703, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–1133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. X. O. Yang, B. P. Pappu, R. Nurieva et al., “T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ,” Immunity, vol. 28, no. 1, pp. 29–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. X. O. Yang, A. D. Panopoulos, R. Nurieva et al., “STAT3 regulates cytokine-mediated generation of inflammatory helper T cells,” Journal of Biological Chemistry, vol. 282, no. 13, pp. 9358–9363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Veldhoen, K. Hirota, A. M. Westendorf et al., “The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins,” Nature, vol. 453, no. 7191, pp. 106–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Brüstle, S. Heink, M. Huber et al., “The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4,” Nature Immunology, vol. 8, no. 9, pp. 958–966, 2007.
  31. L. Z. Shi, R. Wang, G. Huang et al., “HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells,” Journal of Experimental Medicine, vol. 208, no. 7, pp. 1367–1376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. E. V. Dang, J. Barbi, H. Y. Yang et al., “Control of TH17/Treg balance by hypoxia-inducible factor 1,” Cell, vol. 146, no. 5, pp. 772–784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. G. M. Delgoffe, K. N. Pollizzi, A. T. Waickman et al., “The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2,” Nature Immunology, vol. 12, no. 4, pp. 295–304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. G. M. Delgoffe, T. P. Kole, Y. Zheng et al., “The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment,” Immunity, vol. 30, no. 6, pp. 832–844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. K. E. Graeber and N. J. Olsen, “Th17 cell cytokine secretion profile in host defense and autoimmunity,” Inflammation Research, vol. 61, no. 2, pp. 87–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Miossec and J. K. Kolls, “Targeting IL-17 and TH17 cells in chronic inflammation,” Nature Reviews Drug Discovery, vol. 11, pp. 763–776, 2012.
  37. K. I. Happel, M. Zheng, E. Young et al., “Cutting edge: roles of toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection,” Journal of Immunology, vol. 170, no. 9, pp. 4432–4436, 2003. View at Scopus
  38. S. Ferretti, O. Bonneau, G. R. Dubois, C. E. Jones, and A. Trifilieff, “IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger,” Journal of Immunology, vol. 170, no. 4, pp. 2106–2112, 2003. View at Scopus
  39. H. C. K. Shin, N. Benbernou, S. Esnault, and M. Guenounou, “Expression of IL-17 in human memory CD45RO+ T lymphocytes and its regulation by protein kinase A pathway,” Cytokine, vol. 11, no. 4, pp. 257–266, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. S. J. Liu, J. P. Tsai, C. R. Shen et al., “Induction of a distinct CD8 Tnc17 subset by transforming growth factor-β and interleukin-6,” Journal of Leukocyte Biology, vol. 82, no. 2, pp. 354–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Kondo, H. Takata, F. Matsuki, and M. Takiguchi, “Cutting edge: phenotypic characterization and differentiation of human CD8+ T cells producing IL-171,” Journal of Immunology, vol. 182, no. 4, pp. 1794–1798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Huber, S. Heink, H. Grothe et al., “Th17-like developmental process leads to CD8+ Tc17 cells with reduced cytotoxic activity,” European Journal of Immunology, vol. 39, no. 7, pp. 1716–1725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Hamada, M. D. L. L. Garcia-Hernandez, J. B. Reome et al., “Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge,” Journal of Immunology, vol. 182, no. 6, pp. 3469–3481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Ciric, M. El-behi, R. Cabrera, G. X. Zhang, and A. Rostami, “IL-23 drives pathogenic IL-17-producing CD8+ T cells,” Journal of Immunology, vol. 182, no. 9, pp. 5296–5305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. H. R. Yen, T. J. Harris, S. Wada et al., “Tc17 CD8 T cells: functional plasticity and subset diversity,” Journal of Immunology, vol. 183, no. 11, pp. 7161–7168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Hijnen, E. F. Knol, Y. Y. Gent et al., “CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-γ, IL-13, IL-17, and IL-22,” Journal of Investigative Dermatology, vol. 133, no. 4, pp. 973–979, 2013. View at Publisher · View at Google Scholar
  47. M. Huber, S. Heink, A. Pagenstecher et al., “IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis,” Journal of Clinical Investigation, vol. 123, no. 1, pp. 247–260, 2013. View at Publisher · View at Google Scholar
  48. D. A. Bermejo, S. W. Jackson, M. Gorosito-Serran et al., “Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells,” Nature Immunology, vol. 14, no. 5, pp. 514–522, 2013. View at Publisher · View at Google Scholar
  49. D. J. Cua and C. M. Tato, “Innate IL-17-producing cells: the sentinels of the immune system,” Nature Reviews Immunology, vol. 10, no. 7, pp. 479–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. C. E. Sutton and L. A. Mielke, “Mills KHG. IL-17-producing γδ T cells and innate lymphoid cells,” European Journal of Immunology, vol. 42, no. 9, pp. 2221–2231, 2012. View at Publisher · View at Google Scholar
  51. C. E. Sutton, S. J. Lalor, C. M. Sweeney, C. F. Brereton, E. C. Lavelle, and K. H. G. Mills, “Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity,” Immunity, vol. 31, no. 2, pp. 331–341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. C. L. Roark, J. D. French, M. A. Taylor, A. M. Bendele, W. K. Born, and R. L. O'Brien, “Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing γδ T cells,” Journal of Immunology, vol. 179, no. 8, pp. 5576–5583, 2007. View at Scopus
  53. A. Geremia, C. V. Arancibia-Cárcamo, M. P. P. Fleming et al., “IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease,” Journal of Experimental Medicine, vol. 208, no. 6, pp. 1127–1133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Korn and F. Petermann, “Development and function of interleukin 17-producing γδ T cells,” Annals of the New York Academy of Sciences, vol. 1247, no. 1, pp. 34–45, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Iwakura, S. Nakae, S. Saijo, and H. Ishigame, “The roles of IL-17A in inflammatory immune responses and host defense against pathogens,” Immunological Reviews, vol. 226, no. 1, pp. 57–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Pappu, S. Rutz, and W. Ouyang, “Regulation of epithelial immunity by IL-17 family cytokines,” Trends in Immunology, vol. 33, no. 7, pp. 343–349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Ishigame, S. Kakuta, T. Nagai et al., “Differential Roles of Interleukin-17A and -17F in Host Defense against Mucoepithelial Bacterial Infection and Allergic Responses,” Immunity, vol. 30, no. 1, pp. 108–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. S. J. Aujla, Y. R. Chan, M. Zheng et al., “IL-22 mediates mucosal host defense against gram-negative bacterial pneumonia,” Nature Medicine, vol. 14, no. 3, pp. 275–281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. W. Huang, L. Na, P. L. Fidel, and P. Schwarzenberger, “Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice,” Journal of Infectious Diseases, vol. 190, no. 3, pp. 624–631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Kagami, H. L. Rizzo, S. E. Kurtz, L. S. Miller, and A. Blauvelt, “IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans,” Journal of Immunology, vol. 185, no. 9, pp. 5453–5462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Cypowyj, C. Picard, L. Maródi, L. J. Casanova, and A. Puel, “Immunity to infection in IL-17-deficient mice and humans,” European Journal of Immunology, vol. 42, pp. 2246–2254, 2012.
  62. R. Guiton, V. Vasseur, S. Charron et al., “Interleukin 17 receptor signaling is deleterious during toxoplasma gondii infection in susceptible BL6 mice,” Journal of Infectious Diseases, vol. 202, no. 3, pp. 427–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Fan, W. Weifeng, Y. Yuluan, K. Qing, P. Yu, and H. Yanlan, “Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of coxsackievirus b3-induced viral myocarditis reduces myocardium inflammation,” Virology Journal, vol. 8, article 17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. C. R. Crowe, K. Chen, D. A. Pociask et al., “Critical role of IL-17RA in immunopathology of influenza infection,” Journal of Immunology, vol. 183, no. 8, pp. 5301–5310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. M. E. Truchetet, L. Beven, H. Renaudin et al., “Potential role of mycoplasma hominis in interleukin (IL)-17-producing CD4+ t-cell generation via induction of IL-23 secretion by human dendritic cells,” Journal of Infectious Diseases, vol. 204, no. 11, pp. 1796–1805, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. E. V. Acosta-Rodriguez, L. Rivino, J. Geginat et al., “Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells,” Nature Immunology, vol. 8, no. 6, pp. 639–646, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Eyerich, S. Foerster, S. Rombold et al., “Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22,” Journal of Investigative Dermatology, vol. 128, no. 11, pp. 2640–2645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Puel, S. Cypowyj, J. Bustamante et al., “Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity,” Science, vol. 332, no. 6025, pp. 65–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. J. D. Milner, J. M. Brenchley, A. Laurence et al., “Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome,” Nature, vol. 452, no. 7188, pp. 773–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. C. S. Ma, G. Y. J. Chew, N. Simpson et al., “Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3,” Journal of Experimental Medicine, vol. 205, no. 7, pp. 1551–1557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. E. D. Renner, S. Rylaarsdam, S. Aňover-Sombke et al., “Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome,” Journal of Allergy and Clinical Immunology, vol. 122, no. 1, pp. 181–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Kebir, K. Kreymborg, I. Ifergan et al., “Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation,” Nature Medicine, vol. 13, no. 10, pp. 1173–1175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. M. A. Lowes, T. Kikuchi, J. Fuentes-Duculan et al., “Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells,” Journal of Investigative Dermatology, vol. 128, no. 5, pp. 1207–1211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Fujino, A. Andoh, S. Bamba et al., “Increased expression of interleukin 17 in inflammatory bowel disease,” Gut, vol. 52, no. 1, pp. 65–70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Chabaud, J. M. Durand, N. Buchs et al., “Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium,” Arthritis & Rheumatism, vol. 42, no. 5, pp. 963–970, 1999.
  76. A. M. Lin, C. J. Rubin, R. Khandpur et al., “Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis,” Journal of Immunology, vol. 187, no. 1, pp. 490–500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. J. S. Tzartos, M. A. Friese, M. J. Craner et al., “Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis,” American Journal of Pathology, vol. 172, no. 1, pp. 146–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. P. C. M. Res, G. Piskin, O. J. de Boer et al., “Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis,” PLoS ONE, vol. 5, no. 11, Article ID e14108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Cai, X. Shen, C. Ding et al., “Pivotal Role of Dermal IL-17-Producing γδ T Cells in Skin Inflammation,” Immunity, vol. 35, no. 4, pp. 596–610, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Pantelyushin, S. Haak, B. Ingold et al., “Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice,” Journal of Clinical Investigation, vol. 122, pp. 2252–2256, 2012. View at Publisher · View at Google Scholar
  81. F. Petermann, V. Rothhammer, M. C. Claussen et al., “γδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism,” Immunity, vol. 33, no. 3, pp. 351–363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Nakae, A. Nambu, K. Sudo, and Y. Iwakura, “Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice,” Journal of Immunology, vol. 171, no. 11, pp. 6173–6177, 2003. View at Scopus
  83. X. O. Yang, H. C. Seon, H. Park et al., “Regulation of inflammatory responses by IL-17F,” Journal of Experimental Medicine, vol. 205, no. 5, pp. 1063–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. K. A. Bush, K. M. Farmer, J. S. Walker, and B. W. Kirkham, “Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein,” Arthritis and Rheumatism, vol. 46, no. 3, pp. 802–805, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Komiyama, S. Nakae, T. Matsuki et al., “IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 177, no. 1, pp. 566–573, 2006. View at Scopus
  86. H. H. Hofstetter, S. M. Ibrahim, D. Koczan et al., “Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis,” Cellular Immunology, vol. 237, no. 2, pp. 123–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. M. J. McGeachy, K. S. Bak-Jensen, Y. Chen et al., “TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology,” Nature Immunology, vol. 8, no. 12, pp. 1390–1397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. A. L. Croxford, F. Mair, and B. Becher, “IL-23: one cytokine in control of autoimmunity,” European Journal of Immunology, vol. 42, pp. 2263–2273, 2012.
  89. S. Kotake, N. Udagawa, N. Takahashi et al., “IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis,” Journal of Clinical Investigation, vol. 103, no. 9, pp. 1345–1352, 1999. View at Scopus
  90. R. Singh, A. Aggarwal, and R. Misra, “Th1/Th17 cytokine profiles in patients with reactive arthritis/ undifferentiated spondyloarthropathy,” Journal of Rheumatology, vol. 34, no. 11, pp. 2285–2290, 2007. View at Scopus
  91. H. Shen, J. C. Goodall, and J. S. Hill Gaston, “Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis,” Arthritis and Rheumatism, vol. 60, no. 6, pp. 1647–1656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Yang, Y. Chu, X. Yang et al., “Th17 and natural treg cell population dynamics in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 60, no. 5, pp. 1472–1483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. K. Kurasawa, K. Hirose, H. Sano et al., “Increased interleukin-17 production in patients with systemic sclerosis,” Arthritis & Rheumatism, vol. 43, no. 11, pp. 2455–2463, 2000.
  94. E. Lubberts, L. A. B. Joosten, F. A. J. van de Loo, P. Schwarzenberger, J. Kolls, and W. B. van den Berg, “Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction,” Inflammation Research, vol. 51, no. 2, pp. 102–104, 2002. View at Scopus
  95. E. Lubberts, M. Koenders, and W. B. van den Berg, “The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models,” Arthritis Research and Therapy, vol. 7, no. 1, pp. 29–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Sato, A. Suematsu, K. Okamoto et al., “Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction,” Journal of Experimental Medicine, vol. 203, no. 12, pp. 2673–2682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Lubberts, M. I. Koenders, B. Oppers-Walgreen et al., “Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion,” Arthritis and Rheumatism, vol. 50, no. 2, pp. 650–659, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. C. K. Wong, L. C. W. Lit, L. S. Tam, E. K. M. Li, P. T. Y. Wong, and C. W. K. Lam, “Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity,” Clinical Immunology, vol. 127, no. 3, pp. 385–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Noordenbos, N. Yeremenko, I. Gofita et al., “Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis,” Arthritis and Rheumatism, vol. 64, no. 1, pp. 99–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. T. J. Kenna and M. A. Brown, “The role of IL-17-secreting mast cells in inflammatory joint disease,” Nature Reviews Rheumatology, vol. 9, no. 6, pp. 375–379, 2013. View at Publisher · View at Google Scholar
  101. H. Appel, R. Maier, P. Wu et al., “Analysis of IL-17+ cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response,” Arthritis Research and Therapy, vol. 13, no. 3, article R95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. A. J. Hueber, D. L. Asquith, A. M. Miller et al., “Cutting edge: mast cells express IL-17A in rheumatoid arthritis synovium,” Journal of Immunology, vol. 184, no. 7, pp. 3336–3340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Hirota, H. Yoshitomi, M. Hashimoto et al., “Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model,” Journal of Experimental Medicine, vol. 204, no. 12, pp. 2803–2812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. J. P. van Hamburg, P. S. Asmawidjaja, N. Davelaar et al., “Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production,” Arthritis and Rheumatism, vol. 63, no. 1, pp. 73–83, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Yago, Y. Nanke, N. Ichikawa et al., “IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-α antibody: a novel mechanism of osteoclastogenesis by IL-17,” Journal of Cellular Biochemistry, vol. 108, no. 4, pp. 947–955, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Braun and J. Zwerina, “Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis,” Arthritis Research and Therapy, vol. 13, no. 4, article 235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. S. L. Gaffen, “Biology of recently discovered cytokines: interleukin-17—a unique inflammatory cytokine with roles in bone biology and arthritis,” Arthritis Research and Therapy, vol. 6, no. 6, pp. 240–247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. F. Shen, M. J. Ruddy, P. Plamondon, and S. L. Gaffen, “Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells,” Journal of Leukocyte Biology, vol. 77, no. 3, pp. 388–399, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Tokuda, Y. Kanno, A. Ishisaki, M. Takenaka, A. Harada, and O. Kozawa, “Interleukin (IL)-17 enhances tumor necrosis factor-α-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts,” Journal of Cellular Biochemistry, vol. 91, no. 5, pp. 1053–1061, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. M. J. Ruddy, F. Shen, J. B. Smith, A. Sharma, and S. L. Gaffen, “Interleukin-17 regulates expression of the CXC chemokine LIX/CXCL5 in osteoblasts: implications for inflammation and neutrophil recruitment,” Journal of Leukocyte Biology, vol. 76, no. 1, pp. 135–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. M. I. Koenders, J. K. Kolls, B. Oppers-Walgreen et al., “Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis,” Arthritis and Rheumatism, vol. 52, no. 10, pp. 3239–3247, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Chabaud, P. Garnero, J. M. Dayer, P. A. Guerne, F. Fossiez, and P. Miossec, “Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis,” Cytokine, vol. 12, no. 7, pp. 1092–1099, 2000. View at Publisher · View at Google Scholar · View at Scopus
  113. R. M. Onishi and S. L. Gaffen, “Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease,” Immunology, vol. 129, no. 3, pp. 311–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Hot and P. Miossec, “Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes,” Annals of the Rheumatic Diseases, vol. 70, no. 5, pp. 727–732, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Goldberg, O. Nadiv, N. Luknar-Gabor, G. Agar, Y. Beer, and Y. Katz, “Synergism between tumor necrosis factor alpha and interleukin-17 to induce IL-23 p19 expression in fibroblast-like synoviocytes,” Molecular Immunology, vol. 46, no. 8-9, pp. 1854–1859, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Chabaud, F. Fossiez, J. L. Taupin, and P. Miossec, “Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines,” Journal of Immunology, vol. 161, no. 1, pp. 409–414, 1998. View at Scopus
  117. A. Hot, S. Zrioual, V. Lenief, and P. Miossec, “IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes,” Annals of the Rheumatic Diseases, vol. 71, pp. 1393–1401, 2012.
  118. F. Fossiez, O. Djossou, P. Chomarat et al., “T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines,” Journal of Experimental Medicine, vol. 183, no. 6, pp. 2593–2603, 1996. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Zrioual, R. Ecochard, A. Tournadre, V. Lenief, M. A. Cazalis, and P. Miossec, “Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes,” Journal of Immunology, vol. 182, no. 5, pp. 3112–3120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. Y. E. Park, Y. J. Woo, S. H. Park et al., “IL-17 increases cadherin-11 expression in a model of autoimmune experimental arthritis and in rheumatoid arthritis,” Immunology Letters, vol. 140, no. 1-2, pp. 97–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Chabaud, E. Lubberts, L. Joosten, W. van den Berg, and P. Miossec, “IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis,” Arthritis Research, vol. 3, no. 3, pp. 168–177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. H. Kato, J. Endres, and D. A. Fox, “The roles of IFN-γ versus IL-17 in pathogenic effects of human Th17 cells on synovial fibroblasts,” Modern Rheumatology, 2013. View at Publisher · View at Google Scholar
  123. M. L. Toh, G. Gonzales, M. I. Koenders et al., “Role of interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression,” PLoS ONE, vol. 5, no. 10, Article ID e13416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Lefèvre, A. Knedla, C. Tennie et al., “Synovial fibroblasts spread rheumatoid arthritis to unaffected joints,” Nature Medicine, vol. 15, no. 12, pp. 1414–1420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Ryu, J. H. Lee, and S. I. Kim, “IL-17 increased the production of vascular endothelial growth factor in rheumatoid arthritis synoviocytes,” Clinical Rheumatology, vol. 25, no. 1, pp. 16–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. M. C. Honorati, S. Neri, L. Cattini, and A. Facchini, “Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts,” Osteoarthritis and Cartilage, vol. 14, no. 4, pp. 345–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. T. Shalom-Barak, J. Quach, and M. Lotz, “Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-κB,” Journal of Biological Chemistry, vol. 273, no. 42, pp. 27467–27473, 1998. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Martel-Pelletier, F. Mineau, D. Jovanovic, J. A. Di Battista, and J. P. Pelletier, “Mitogen-activated protein kinase and nuclear factor kappaB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated proten kinase (MAPKAPK),” Arthritis & Rheumatism, vol. 42, pp. 2399–2409, 1999.
  129. M. C. Honorati, M. Bovara, L. Cattini, A. Piacentini, and A. Facchini, “Contribution of interleukin 17 to human cartilage degradation and synovial inflammation in osteoarthritis,” Osteoarthritis and Cartilage, vol. 10, no. 10, pp. 799–807, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Dudler, N. Renggli-Zulliger, N. Busso, M. Lotz, and A. So, “Effect of interleukin 17 on proteoglycan degradation in murine knee joints,” Annals of the Rheumatic Diseases, vol. 59, no. 7, pp. 529–532, 2000. View at Publisher · View at Google Scholar · View at Scopus
  131. M. I. Koenders, R. J. Marijnissen, I. Devesa et al., “Tumor necrosis factor-interleukin-17 interplay induces S100A8, interleukin-1β, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: rationale for combination treatment during arthritis,” Arthritis and Rheumatism, vol. 63, no. 8, pp. 2329–2339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Romero-Sánchez, D. A. Jaimes, J. Londoño et al., “Association between Th-17 cytokine profile and clinical features in patients with spondyloarthritis,” Clinical and Experimental Rheumatology, vol. 29, no. 5, pp. 828–834, 2011. View at Scopus
  133. Y. Mei, F. Pan, J. Gao et al., “Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis,” Clinical Rheumatology, vol. 30, no. 2, pp. 269–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. X. Wang, Z. Lin, Q. Wei, Y. Jiang, and J. Gu, “Expression of IL-23 and IL-17 and effect of IL-23 on IL-17 production in ankylosing spondylitis,” Rheumatology International, vol. 29, no. 11, pp. 1343–1347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. J. P. Sherlock, B. Joyce-Shaikh, S. P. Turner et al., “IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells,” Nature Medicine, vol. 18, pp. 1069–1076, 2012.
  136. T. Schaeverbeke, M. É. Truchetet, and C. Richez, “When and where does rheumatoid arthritis begin?” Joint Bone Spine, vol. 79, no. 6, pp. 550–554, 2012. View at Publisher · View at Google Scholar
  137. B. Manoury-Schwartz, G. Chiocchia, N. Bessis et al., “High susceptibility to collagen-induced arthritis in mice lacking IFN-γ receptors,” Journal of Immunology, vol. 158, no. 11, pp. 5501–5506, 1997. View at Scopus
  138. K. Vermeire, H. Heremans, M. Vandeputte, S. Huang, A. Billiau, and P. Matthys, “Accelerated collagen-induced arthritis in IFN-γ receptor-deficient mice,” Journal of Immunology, vol. 158, no. 11, pp. 5507–5513, 1997. View at Scopus
  139. K. Hirota, M. Hashimoto, H. Yoshitomi et al., “T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis,” Journal of Experimental Medicine, vol. 204, no. 1, pp. 41–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. M. I. Koenders, I. Devesa, R. J. Marijnissen et al., “Interleukin-1 drives pathogenic Th17 cells during spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice,” Arthritis and Rheumatism, vol. 58, no. 11, pp. 3461–3470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. R. Horai, A. Nakajima, K. Habiro et al., “TNF-α is crucial for the development of autoimmune arthritis in IL-1 receptor antagonist-deficient mice,” Journal of Clinical Investigation, vol. 114, no. 11, pp. 1603–1611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. S. Nakae, S. Saijo, R. Horai, K. Sudo, S. Mori, and Y. Iwakura, “IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5986–5990, 2003. View at Publisher · View at Google Scholar · View at Scopus
  143. H. Ogura, M. Murakami, Y. Okuyama et al., “Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction,” Immunity, vol. 29, no. 4, pp. 628–636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. H. J. Wu, I. I. Ivanov, J. Darce et al., “Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells,” Immunity, vol. 32, no. 6, pp. 815–827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. P. Miossec, “IL-17 and Th17 cells in human inflammatory diseases,” Microbes and Infection, vol. 11, no. 5, pp. 625–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. A. Peters, L. A. Pitcher, J. M. Sullivan et al., “Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation,” Immunity, vol. 35, no. 6, pp. 986–996, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. B. Pöllinger, T. Junt, B. Metzler et al., “Th17 cells, not IL-17+ γδ T cells, drive arthritic bone destruction in mice and humans,” Journal of Immunology, vol. 186, no. 4, pp. 2602–2612, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. S. A. Metawi, D. Abbas, M. M. Kamal, and M. K. Ibrahim, “Serum and synovial fluid levels of interleukin-17 in correlation with disease activity in patients with RA,” Clinical Rheumatology, vol. 30, no. 9, pp. 1201–1207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. L. Zhang, Y. G. Li, Y. H. Li et al., “Increased frequencies of th22 cells as well as th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis,” PLoS ONE, vol. 7, no. 4, Article ID e31000, 2012. View at Publisher · View at Google Scholar · View at Scopus
  150. J. Chen, J. Li, H. Gao et al., “Comprehensive evaluation of different T-helper cell subsets differentiation and function in rheumatoid arthritis,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 535361, 6 pages, 2012. View at Publisher · View at Google Scholar
  151. E. M. Moran, R. Mullan, J. McCormick et al., “Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-α, Oncostatin M and response to biologic therapies,” Arthritis Research and Therapy, vol. 11, no. 4, article R113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. Y. Ito, T. Usui, S. Kobayashi et al., “Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 60, no. 8, pp. 2294–2303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. M. Gatto, M. Zen, A. Ghirardello et al., “Emerging and critical issues in the pathogenesis of lupus,” Autoimmunity Reviews, vol. 12, no. 4, pp. 523–536, 2013. View at Publisher · View at Google Scholar
  154. A. T. Borchers, S. M. Naguwa, Y. Shoenfeld, and M. E. Gershwin, “The geoepidemiology of systemic lupus erythematosus,” Autoimmunity Reviews, vol. 9, no. 5, pp. A277–A287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. A. Nalbandian, J. C. Crispín, and G. C. Tsokos, “Interleukin-17 and systemic lupus erythematosus: current concepts,” Clinical and Experimental Immunology, vol. 157, no. 2, pp. 209–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Edgerton, J. C. Crispín, C. M. Moratz et al., “IL-17 producing CD4+ T cells mediate accelerated ischemia/reperfusion-induced injury in autoimmunity-prone mice,” Clinical Immunology, vol. 130, no. 3, pp. 313–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. H. K. Kang, M. Liu, and S. K. Datta, “Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells,” Journal of Immunology, vol. 178, no. 12, pp. 7849–7858, 2007. View at Scopus
  158. H. C. Hsu, P. Yang, J. Wang et al., “Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice,” Nature Immunology, vol. 9, no. 2, pp. 166–175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. J. E. Craft, “Follicular helper T cells in immunity and systemic autoimmunity,” Nature Reviews Rheumatology, vol. 8, pp. 337–347, 2012.
  160. D. Y. Chen, Y. M. Chen, M. C. Wen, T. Y. Hsieh, W. T. Hung, and J. L. Lan, “The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis,” Lupus, vol. 21, no. 13, pp. 1385–1396, 2012. View at Publisher · View at Google Scholar
  161. M. Nakou, E. D. Papadimitraki, A. Fanouriakis et al., “Interleukin-21 is increased in active systemic lupus erythematosus patients and contributes to the generation of plasma B cells,” Clinical and Experimental Rheumatology, vol. 31, no. 2, pp. 172–179, 2013.
  162. D. Y. Chen, Y. M. Chen, J. L. Lan, C. C. Lin, H. H. Chen, and C. W. Hsieh, “Potential role of Th17 cells in the pathogenesis of adult-onset Still’s disease,” Rheumatology, vol. 49, no. 12, pp. 2305–2312, 2010. View at Publisher · View at Google Scholar
  163. K. Shah, W. W. Lee, S. H. Lee et al., “Correction: dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 12, no. 2, article R53, 2010. View at Publisher · View at Google Scholar
  164. J. C. Crispín, M. Oukka, G. Bayliss et al., “Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys,” Journal of Immunology, vol. 181, no. 12, pp. 8761–8766, 2008. View at Scopus
  165. Z. Wen, L. Xu, W. Xu, Z. Yin, X. Gao, and S. Xiong, “Interleukin-17 expression positively correlates with disease severity of lupus nephritis by increasing anti-double-stranded DNA antibody production in a lupus model induced by activated lymphocyte derived DNA,” Plos One, vol. 8, no. 3, Article ID e58161, 2013. View at Publisher · View at Google Scholar
  166. B. Yu, M. Guan, Y. Peng et al., “Copy number variations of interleukin-17F, interleukin-21, and interleukin-22 are associated with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 63, no. 11, pp. 3487–3492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  167. C. Chizzolini, N. C. Brembilla, E. Montanari, and M. E. Truchetet, “Fibrosis and immune dysregulation in systemic sclerosis,” Autoimmunity Reviews, vol. 10, no. 5, pp. 276–281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. Y. Shapira, N. Agmon-Levin, and Y. Shoenfeld, “Geoepidemiology of autoimmune rheumatic diseases,” Nature Reviews Rheumatology, vol. 6, no. 8, pp. 468–476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. Z. H. McMahan and L. K. Hummers, “Systemic sclerosis—challenges for clinical practice,” Nature Reviews Rheumatology, vol. 9, pp. 90–100, 2013.
  170. T. R. Katsumoto, M. L. Whitfield, and M. K. Connolly, “The pathogenesis of systemic sclerosis,” Annual Review of Pathology, vol. 6, pp. 509–537, 2011. View at Publisher · View at Google Scholar · View at Scopus
  171. P. Dieudé, C. Boileau, and Y. Allanore, “Immunogenetics of systemic sclerosis,” Autoimmunity Reviews, vol. 10, no. 5, pp. 282–290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. P. Dieudé, M. Guedj, M. E. Truchetet et al., “Association of the CD226 Ser307 variant with systemic sclerosis,” Arthritis and Rheumatism, vol. 63, no. 4, pp. 1097–1105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. R. J. Prescott, A. J. Freemont, C. J. P. Jones, J. Hoyland, and P. Fielding, “Sequential dermal microvascular and perivascular changes in the development of scleroderma,” Journal of Pathology, vol. 166, no. 3, pp. 255–263, 1992. View at Scopus
  174. T. A. Wynn, “Fibrotic disease and the T(H)1/T(H)2 paradigm,” Nature Reviews Immunology, vol. 4, pp. 583–594, 2004.
  175. M. Ferrarini, V. Steen, T. A. Medsger Jr., and T. L. Whiteside, “Functional and phenotypic analysis of T lymphocytes cloned from the skin of patients with systemic sclerosis,” Clinical and Experimental Immunology, vol. 79, no. 3, pp. 346–352, 1990. View at Scopus
  176. M. E. Truchetet, N. C. Brembilla, E. Montanari, Y. Allanore, and C. Chizzolini, “Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease,” Arthritis Research & Therapy, vol. 13, no. 5, article R166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. M. E. Truchetet, N. C. Brembilla, E. Montanari et al., “Interleukin-17A+ cell counts are increased in systemic sclerosis skin and their number is inversely correlated with the extent of skin involvement,” Arthritis & Rheumatism, vol. 65, no. 5, pp. 1347–1356, 2013. View at Publisher · View at Google Scholar
  178. M. S. Wilson, S. K. Madala, T. R. Ramalingam et al., “Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent,” Journal of Experimental Medicine, vol. 207, no. 3, pp. 535–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. Y. Okamoto, M. Hasegawa, T. Matsushita et al., “Potential roles of interleukin-17A in the development of skin fibrosis in mice,” Arthritis & Rheumatism, vol. 64, no. 11, pp. 3726–3735, 2012. View at Publisher · View at Google Scholar
  180. A. Yoshizaki, K. Yanaba, Y. Iwata et al., “Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model,” Journal of Immunology, vol. 185, no. 4, pp. 2502–2515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. F. Meloni, N. Solari, L. Cavagna, M. Morosini, C. M. Montecucco, and A. M. Fietta, “Frequency of Th1, Th2 and Th17 producing T lymphocytes in bronchoalveolar lavage of patients with systemic sclerosis,” Clinical and Experimental Rheumatology, vol. 27, no. 5, pp. 765–772, 2009. View at Scopus
  182. E. M. Truchetet, Y. Allanore, E. Montanari, C. Chizzolini, and N. C. Brembilla, “Prostaglandin I(2) analogues enhance already exuberant Th17 cell responses in systemic sclerosis,” Annals of the Rheumatic Diseases, vol. 71, no. 12, pp. 2044–2050, 2012. View at Publisher · View at Google Scholar
  183. A. Laurence and J. J. O’Shea, “T(H)-17 differentiation: of mice and men,” Nature Immunology, vol. 8, pp. 903–905, 2007. View at Publisher · View at Google Scholar
  184. D. D. Gladman, P. J. Mease, G. Krueger et al., “Outcome measures in psoriatic arthritis,” Journal of Rheumatology, vol. 32, no. 11, pp. 2262–2269, 2005. View at Scopus
  185. Y. Liu, C. Helms, W. Liao et al., “A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci,” PLoS Genetics, vol. 4, no. 3, Article ID e1000041, 2008. View at Publisher · View at Google Scholar · View at Scopus
  186. R. P. Nair, A. Ruether, P. E. Stuart et al., “Polymorphisms of the IL12B and IL23R genes are associated with psoriasis,” Journal of Investigative Dermatology, vol. 128, no. 7, pp. 1653–1661, 2008. View at Publisher · View at Google Scholar · View at Scopus
  187. P. Szodoray, P. Alex, C. M. Chappell-Woodward et al., “Circulating cytokines in Norwegian patients with psoriatic arthritis determined by a multiplex cytokine array system,” Rheumatology, vol. 46, no. 3, pp. 417–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  188. S. P. Raychaudhuri, S. K. Raychaudhuri, and M. C. Genovese, “IL-17 receptor and its functional significance in psoriatic arthritis,” Molecular and Cellular Biochemistry, vol. 359, no. 1-2, pp. 419–429, 2012. View at Publisher · View at Google Scholar · View at Scopus
  189. U. Hüffmeier, S. Uebe, A. B. Ekici et al., “CoMon variants at TRAF3IP2 are aSociated with susceptibility to psoriatic arthritis and psoriasis,” Nature Genetics, vol. 42, no. 11, pp. 996–999, 2010. View at Publisher · View at Google Scholar · View at Scopus
  190. M. S. Doyle, E. S. Collins, O. M. Fitzgerald, and S. R. Pennington, “New insight into the functions of the interleukin-17 receptor adaptor protein Act1 in psoriatic arthritis,” Arthritis Research & Therapy, vol. 14, no. 5, article 226, 2012. View at Publisher · View at Google Scholar
  191. J. Leipe, M. Grunke, C. Dechant et al., “Role of Th17 cells in human autoimmune arthritis,” Arthritis and Rheumatism, vol. 62, no. 10, pp. 2876–2885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  192. A. van Tubergen and U. Weber, “Diagnosis and classification in spondyloarthritis: identifying a chameleon,” Nature Reviews Rheumatology, vol. 8, no. 5, pp. 253–261, 2012. View at Publisher · View at Google Scholar · View at Scopus
  193. N. Warde, “Spondyloarthropathies: HLA-B27 and ERAP1 contribute to ankylosing spondylitis via aberrant peptide processing and presentation,” Nature Reviews Rheumatology, vol. 7, no. 9, article 498, 2011. View at Publisher · View at Google Scholar · View at Scopus
  194. L. S. Tam, J. Gu, and D. Yu, “Pathogenesis of ankylosing spondylitis,” Nature Reviews Rheumatology, vol. 6, no. 7, pp. 399–405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  195. P. Rahman, R. D. Inman, D. D. Gladman, J. P. Reeve, L. Peddle, and W. P. Maksymowych, “Association of interleukin-23 receptor variants with ankylosing spondylitis,” Arthritis and Rheumatism, vol. 58, no. 4, pp. 1020–1025, 2008. View at Publisher · View at Google Scholar · View at Scopus
  196. H. Yoshitomi, N. Sakaguchi, K. Kobayashi et al., “A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice,” Journal of Experimental Medicine, vol. 201, no. 6, pp. 949–960, 2005. View at Publisher · View at Google Scholar · View at Scopus
  197. M. Ruutu, G. Thomas, R. Steck et al., “β-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice,” Arthritis & Rheumatism, vol. 64, no. 7, pp. 2211–2222, 2012. View at Publisher · View at Google Scholar
  198. P. Bowness, A. Ridley, J. Shaw et al., “Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis,” Journal of Immunology, vol. 186, no. 4, pp. 2672–2680, 2011. View at Publisher · View at Google Scholar · View at Scopus
  199. M. C. Genovese, F. van den Bosch, S. A. Roberson et al., “LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study,” Arthritis and Rheumatism, vol. 62, no. 4, pp. 929–939, 2010. View at Publisher · View at Google Scholar · View at Scopus
  200. M. M. Elloso, M. Gomez-Angelats, and A. M. Fourie, “Targeting the Th17 pathway in psoriasis,” Journal of Leukocyte Biology, vol. 92, pp. 1187–1197, 2012.
  201. D. D. Patel, D. M. Lee, F. Kolbinger, and C. Antoni, “Effect of IL-17A blockade with secukinumab in autoimmune diseases,” Annals of the Rheumatic Diseases, vol. 72, supplement 2, pp. iii116–iii123, 2013. View at Publisher · View at Google Scholar
  202. K. A. Papp, C. Leonardi, A. Menter et al., “Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis,” New England Journal of Medicine, vol. 366, no. 13, pp. 1181–1189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  203. K. Garber, “Anti-IL-17 mAbs herald new options in psoriasis.,” Nature Biotechnology, vol. 30, pp. 475–477, 2012.
  204. N. Yeilding, P. Szapary, C. Brodmerkel et al., “Development of the IL-12/23 antagonist ustekinumab in psoriasis: past, present, and future perspectives,” Annals of the New York Academy of Sciences, vol. 1222, no. 1, pp. 30–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  205. A. Gottlieb, A. Menter, and A. Mendelsohn, “Ustekinumab, a human interleukin 12/23 monoclonal antibody, for psoriatic arthritis: randomised, double-blind, placebo-controlled, crossover trial,” The Lancet, vol. 373, pp. 633–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  206. A. Kavanaugh, A. Menter, A. Mendelsohn, Y. K. Shen, S. Lee, and A. B. Gottlieb, “Effect of ustekinumab on physical function and health-related quality of life in patients with psoriatic arthritis: a randomized, placebo-controlled, phase II trial,” Current Medical Research and Opinion, vol. 26, no. 10, pp. 2385–2392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  207. S. C. P. Williams, “New biologic drugs get under the skin of psoriasis,” Nature Medicine, vol. 18, article 638, 2012.
  208. E. Bangert, D. Laimer, E. Riedl et al., “Anti-IL-23p19 (MK-3222): effects on the hallmarks of inflammation in psoriasis,” Journal of Investigative Dermatology, vol. 132, pp. S50–S65, 2012.
  209. Z. Ash and P. Emery, “The role of tocilizumab in the management of rheumatoid arthritis,” Expert Opinion on Biological Therapy, vol. 12, pp. 1277–1289, 2012.
  210. M. Mihara, K. Kasutani, M. Okazaki et al., “Tocilizumab inhibits signal transduction mediated by both mIL-6R and sIL-6R, but not by the receptors of other members of IL-6 cytokine family,” International Immunopharmacology, vol. 5, no. 12, pp. 1731–1740, 2005. View at Publisher · View at Google Scholar · View at Scopus
  211. P. Emery, E. Keystone, H. P. Tony et al., “IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial,” Annals of the Rheumatic Diseases, vol. 67, no. 11, pp. 1516–1523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  212. M. C. Genovese, J. D. McKay, E. L. Nasonov et al., “Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study,” Arthritis and Rheumatism, vol. 58, no. 10, pp. 2968–2980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  213. R. N. Maini, P. C. Taylor, J. Szechinski et al., “Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate,” Arthritis and Rheumatism, vol. 54, no. 9, pp. 2817–2829, 2006. View at Publisher · View at Google Scholar · View at Scopus
  214. R. S. Woodrick and E. M. Ruderman, “IL-6 inhibition for the treatment of rheumatoid arthritis and other conditions,” Bulletin of the NYU Hospital for Joint Diseases, vol. 70, no. 3, pp. 195–199, 2012.
  215. F. K. Lekpa, C. Poulain, D. Wendling et al., “Is IL-6 an appropriate target to treat spondyloarthritis patients refractory to anti-TNF therapy? A multicentre retrospective observational study,” Arthritis Research and Therapy, vol. 14, no. 2, article R53, 2012. View at Publisher · View at Google Scholar · View at Scopus
  216. P. Mease, V. Strand, L. Shalamberidze et al., “A phase II, double-blind, randomised, placebo-controlled study of BMS945429 (ALD518) in patients with rheumatoid arthritis with an inadequate response to methotrexate,” Annals of the Rheumatic Diseases, vol. 71, no. 7, pp. 1183–1189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  217. C. A. Dinarello, A. Simon, and J. W. M. van der Meer, “Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases,” Nature Reviews Drug Discovery, vol. 11, pp. 633–652, 2012.
  218. J. R. Huh, M. W. L. Leung, P. Huang et al., “Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγ3t activity,” Nature, vol. 472, no. 7344, pp. 486–490, 2011. View at Publisher · View at Google Scholar · View at Scopus
  219. L. A. Solt, N. Kumar, P. Nuhant et al., “Suppression of TH 17 differentiation and autoimmunity by a synthetic ROR ligand,” Nature, vol. 472, no. 7344, pp. 491–494, 2011. View at Publisher · View at Google Scholar · View at Scopus
  220. T. Xu, X. Wang, B. Zhong, R. I. Nurieva, S. Ding, and C. Dong, “Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORγt protein,” Journal of Biological Chemistry, vol. 286, no. 26, pp. 22707–22710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  221. X. Zhang, J. Jin, X. Peng, V. S. Ramgolam, and S. Markovic-Plese, “Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes,” Journal of Immunology, vol. 180, no. 10, pp. 6988–6996, 2008. View at Scopus
  222. J. H. Ju, Y. J. Heo, M. L. Cho et al., “Modulation of STAT-3 in rheumatoid synovial T cells suppresses Th17 differentiation and increases the proportion of Treg cells,” Arthritis & Rheumatism, vol. 64, pp. 3543–3552, 2012.
  223. M. Sen, S. M. Thomas, S. Kim et al., “First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy,” Cancer Discovery, vol. 2, no. 8, pp. 694–705, 2012. View at Publisher · View at Google Scholar
  224. G. R. Burmester, R. Blanco, C. Charles-Schoeman et al., “Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial,” Lancet, vol. 381, no. 9865, pp. 451–460, 2013. View at Publisher · View at Google Scholar
  225. K. Maeshima, K. Yamaoka, S. Kubo et al., “The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferon-γ and interleukin-17 production by human CD4+ T cells,” Arthritis & Rheumatism, vol. 64, no. 6, pp. 1790–1798, 2012. View at Publisher · View at Google Scholar
  226. Y. Tanaka and K. Yamaoka, “JAK inhibitor tofacitinib for treating rheumatoid arthritis: from basic to clinical,” Modern Rheumatology, vol. 23, no. 3, pp. 415–424, 2013. View at Publisher · View at Google Scholar
  227. Y. Tanaka, Y. Maeshima, and K. Yamaoka, “In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 71, supplement 2, pp. i70–i74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  228. C. Rommel, M. Camps, and H. Ji, “PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond?” Nature Reviews Immunology, vol. 7, pp. 191–201, 2007.
  229. K. W. Kim, M. L. Cho, M. K. Park et al., “Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis,” Arthritis Research & Therapy, vol. 7, no. 1, pp. R139–R148, 2005. View at Scopus
  230. S. Toyama, N. Tamura, K. Haruta et al., “Inhibitory effects of ZSTK474, a novel phosphoinositide 3-kinase inhibitor, on osteoclasts and collagen-induced arthritis in mice,” Arthritis Research and Therapy, vol. 12, no. 3, article R92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  231. M. Camps, T. Rückle, H. Ji et al., “Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis,” Nature Medicine, vol. 11, pp. 936–943, 2005.
  232. S. Hayer, N. Pundt, M. A. Peters et al., “PI3Kgamma regulates cartilage damage in chronic inflammatory arthritis,” FASEB Journal, vol. 23, no. 12, pp. 4288–4298, 2009. View at Publisher · View at Google Scholar
  233. J. A. Marwick, G. Caramori, C. S. Stevenson et al., “Inhibition of PI3Kδ restores glucocorticoid function in smoking-induced airway inflammation in mice,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 7, pp. 542–548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  234. E. Banham-Hall, M. R. Clatworthy, and K. Okkenhaug, “The therapeutic potential for PI3K inhibitors in autoimmune rheumatic diseases,” Open Rheumatology Journal, vol. 6, pp. 245–258, 2012.
  235. C. Wu, N. Yosef, T. Thalhamer et al., “Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1,” Nature, vol. 496, pp. 513–517, 2013.
  236. M. Kleinewietfeld, A. Manzel, J. Titze et al., “Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells,” Nature, vol. 496, pp. 518–522, 2013.