About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 295812, 9 pages
http://dx.doi.org/10.1155/2013/295812
Research Article

Mineral and Matrix Changes in Brtl/+ Teeth Provide Insights into Mineralization Mechanisms

1Musculoskeletal Integrity Program, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, USA
2Department of Endodontics, School of Dental Medicine, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15261, USA
3Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15261, USA
4Bone & Extracellular Matrix Branch, NIH/ NICHD, Bethesda, MD 20892, USA

Received 11 January 2013; Revised 27 March 2013; Accepted 3 May 2013

Academic Editor: Yong-Hee P. Chun

Copyright © 2013 Adele L. Boskey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Marini, A. Forlino, W. A. Cabral et al., “Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans,” Human Mutation, vol. 28, no. 3, pp. 209–221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Rauch, L. Lalic, P. Roughley, and F. H. Glorieux, “Genotype-phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I,” European Journal of Human Genetics, vol. 18, no. 6, pp. 642–647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. D. Blank and A. L. Boskey, “Genetic collagen diseases: influence of collagen mutations on structure and mechanical behavior,” in Collagen: Structure and Mechanics, P. Fratzl, Ed., Chapter 16, pp. 447–474, Springer Science, Business Media, 2008.
  4. M. J. Barron, S. T. McDonnell, I. MacKie, and M. J. Dixon, “Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia,” Orphanet Journal of Rare Diseases, vol. 3, no. 1, article 31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. O. Sillence, A. Senn, and D. M. Danks, “Genetic heterogeneity in osteogenesis imperfecta,” Journal of Medical Genetics, vol. 16, no. 2, pp. 101–116, 1979. View at Scopus
  6. A. Forlino, W. A. Cabral, A. M. Barnes, and J. C. Marini, “New perspectives on osteogenesis imperfecta: invited review,” Nature Reviews Endocrinology, vol. 7, pp. 540–557, 2011. View at Publisher · View at Google Scholar
  7. A. Forlino, F. D. Porter, L. Eric J, H. Westphal, and J. C. Marini, “Use of the Cre/lox recombination system to develop a non-lethal knock-in murine model for osteogenesis imperfecta with an α1(I) G349C substitution. Variability in phenotype in BrtlIV mice,” Journal of Biological Chemistry, vol. 274, no. 53, pp. 37923–37931, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. K. M. Kozloff, A. Carden, C. Bergwitz et al., “Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength,” Journal of Bone and Mineral Research, vol. 19, no. 4, pp. 614–622, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Wallace, B. G. Orr, J. C. Marini, and M. M. B. Holl, “Nanoscale morphology of Type I collagen is altered in the Brtl mouse model of Osteogenesis Imperfecta,” Journal of Structural Biology, vol. 173, no. 1, pp. 146–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. T. E. Uveges, P. Collin-Osdoby, W. A. Cabral et al., “Cellular mechanism of decreased bone in Brtl mouse model of OI: imbalance of decreased osteoblast function and increased osteoclasts and their precursors,” Journal of Bone and Mineral Research, vol. 23, no. 12, pp. 1983–1994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Boskey, M. F. Young, T. Kilts, and K. Verdelis, “Variation in mineral properties in normal and mutant bones and teeth,” Cells Tissues Organs, vol. 181, no. 3-4, pp. 144–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. L. G. Sloofman, K. Verdelis, L. Spevak et al., “Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth,” Bone, vol. 47, no. 1, pp. 93–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Verdelis, L. Lukashova, E. Atti et al., “MicroCT morphometry analysis of mouse cancellous bone: intra- and inter-system reproducibility,” Bone, vol. 49, no. 3, pp. 580–587, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Baldassarri, H. C. Margolis, and E. Beniash, “Compositional determinants of mechanical properties of enamel,” Journal of Dental Research, vol. 87, no. 7, pp. 645–649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Gourion-Arsiquaud, P. A. West, and A. L. Boskey, “Fourier transform-infrared microspectroscopy and microscopic imaging,” Methods in Molecular Biology, vol. 455, pp. 293–303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. L. Boskey and R. Mendelsohn, “Infrared spectroscopic characterization of mineralized tissues,” Vibrational Spectroscopy, vol. 38, no. 1-2, pp. 107–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Spevak, C. Flach, T. Hunter, R. Mendelsohn, and A. L. Boskey, “FTIRI parameters describing acid phosphate substitution in biologic hydroxyapatite,” Calcified Tissue International, vol. 92, pp. 418–428, 2013.
  18. S. G. Kazarian and K. L. A. Chan, “‘Chemical photography’ of drug release,” Macromolecules, vol. 36, pp. 9866–9872, 2003.
  19. J. P. Simmer, A. S. Richardson, Y. Y. Hu, C. E. Smith, and J. Ching-Chun Hu, “A post-classical theory of enamel biomineralization…and why we need one,” International Journal of Oral Science, vol. 4, pp. 129–134, 2012.
  20. J. Moradian-Oldak, “Protein-mediated enamel mineralization,” Frontiers in Bioscience, vol. 17, pp. 1996–2023, 2012. View at Publisher · View at Google Scholar
  21. M. Goldberg, A. B. Kulkarni, M. Young, and A. Boskey, “Dentin: structure, composition and mineralization,” Frontiers in Bioscience, vol. 3, pp. 711–735, 2011. View at Scopus
  22. A. L. Boskey, B. Christensen, H. Taleb, and E. S. Sørensen, “Post-translational modification of osteopontin: effects on in vitro hydroxyapatite formation and growth,” Biochemical and Biophysical Research Communications, vol. 419, pp. 333–338, 2012.
  23. R. Gioia, C. Panaroni, R. Besio et al., “Impaired osteoblastogenesis in a murine model of dominant osteogenesis imperfecta: a new target for osteogenesis imperfecta pharmacological therapy,” Stem Cells, vol. 30, pp. 1465–1476, 2012. View at Publisher · View at Google Scholar
  24. M. Goldberg, A. Marchadier, C. Vidal et al., “Differential effects of fibromodulin deficiency on mouse mandibular bones and teeth: a micro-CT time course study,” Cells Tissues Organs, vol. 194, no. 2-4, pp. 205–210, 2011.
  25. N. L. Leong, J. M. Hurng, S. I. Djomehri, S. A. Gansky, M. I. Ryder, and S. P. Ho, “Age-related adaptation of bone-PDL-tooth complex: Rattus-Norvegicus as a model system,” PLoS One, vol. 7, Article ID e35980, 2012.
  26. J. W. Kim and J. P. Simmer, “Hereditary dentin defects,” Journal of Dental Research, vol. 86, no. 5, pp. 392–399, 2007.
  27. T. Murayama, R. Iwatsubo, S. Akiyama, A. Amano, and I. Morisaki, “Familial hypophosphatemic vitamin d-resistant rickets: dental findings and histologic study of teeth,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 90, no. 3, pp. 310–316, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Pallos, P. S. Hart, J. R. Cortelli et al., “Novel COL1A1 mutation (G599C) associated with mild osteogenesis imperfecta and dentinogenesis imperfecta,” Archives of Oral Biology, vol. 46, no. 5, pp. 459–470, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Boukpessi, D. Septier, S. Bagga, M. Garabedian, M. Goldberg, and C. Chaussain-Miller, “Dentin alteration of deciduous teeth in human hypophosphatemic rickets,” Calcified Tissue International, vol. 79, no. 5, pp. 294–300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Hillmann and W. Geurtsen, “Pathohistology of undecalcified primary teeth in vitamin D-resistant rickets Review and report of two cases,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 82, no. 2, pp. 218–224, 1996. View at Scopus
  31. H. Fong, E. Y. Chu, K. A. Tompkins et al., “Aberrant cementum phenotype associated with the hypophosphatemic Hyp mouse,” Journal of Periodontology, vol. 80, no. 8, pp. 1348–1354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. S. Davis, B. L. Kovacic, J. C. Marini, A. J. Shih, and K. M. Kozloff, “Increased susceptibility to microdamage in Brtl/+ mouse model for osteogenesis imperfecta,” Bone, vol. 50, pp. 784–791, 2012. View at Publisher · View at Google Scholar
  33. A. Majorana, E. Bardellini, P. C. Brunelli, M. Lacaita, A. P. Cazzolla, and G. Favia, “Dentinogenesis imperfecta in children with osteogenesis imperfecta: a clinical and ultrastructural study,” International Journal of Paediatric Dentistry, vol. 20, no. 2, pp. 112–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Veis, C. Sfeir, and C. B. Wu, “Phosphorylation of the proteins of the extracellular matrix of mineralized tissues by casein kinase-like activity,” Critical Reviews in Oral Biology and Medicine, vol. 8, no. 4, pp. 360–379, 1997. View at Scopus
  35. A. Veis and J. R. Dorvee, “Biomineralization mechanisms: a new paradigm for crystal nucleation in organic matrices,” Calcified Tissue International, 2012. View at Publisher · View at Google Scholar
  36. D. Li, M. H. Nielsen, J. R. Lee, C. Frandsen, J. F. Banfield, and J. J. De Yoreo, “Direction-specific interactions control crystal growth by oriented attachment,” Science, vol. 336, pp. 1014–1018, 2012. View at Publisher · View at Google Scholar