About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 297692, 14 pages
http://dx.doi.org/10.1155/2013/297692
Research Article

Interference with RUNX1/ETO Leukemogenic Function by Cell-Penetrating Peptides Targeting the NHR2 Oligomerization Domain

1Institute for Biomedical Research, Georg-Speyer-Haus, 60596 Frankfurt, Germany
2Institute for Molecular Medicine, Goethe-University, 60590 Frankfurt, Germany
3Department of Transfusion Medicine, Cell Therapy and Haemostasis, Ludwig-Maximilian University Hospital, 81377 Munich, Germany

Received 22 February 2013; Revised 9 June 2013; Accepted 10 June 2013

Academic Editor: Lubna Nasir

Copyright © 2013 Yvonne Bartel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Döhner and H. Döhner, “Molecular characterization of acute myeloid leukemia,” Haematologica, vol. 93, no. 7, pp. 976–982, 2008.
  2. F. Rosenbauer and D. G. Tenen, “Transcription factors in myeloid development: balancing differentiation with transformation,” Nature Reviews Immunology, vol. 7, no. 2, pp. 105–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. T. Look, “Oncogenic transcription factors in the human acute leukemias,” Science, vol. 278, no. 5340, pp. 1059–1064, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. K. A. Link, F.-S. Chou, and J. C. Mulloy, “Core binding factor at the crossroads: determining the fate of the HSC,” Journal of Cellular Physiology, vol. 222, no. 1, pp. 50–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Melnick, J. J. Westendorf, A. Polinger et al., “The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein,” Molecular and Cellular Biology, vol. 20, no. 6, pp. 2075–2086, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. L. F. Peterson and D.-E. Zhang, “The 8;21 translocation in leukemogenesis,” Oncogene, vol. 23, no. 24, pp. 4255–4262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Wang, A. Gural, X.-J. Sun et al., “The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation,” Science, vol. 333, no. 6043, pp. 765–769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Niebuhr, M. Fischer, M. Täger, J. Cammenga, and C. Stocking, “Gatekeeper function of the RUNX1 transcription factor in acute leukemia,” Blood Cells, Molecules, and Diseases, vol. 40, no. 2, pp. 211–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Boissel, H. Leroy, B. Brethon et al., “Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML),” Leukemia, vol. 20, no. 6, pp. 965–970, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Paschka, G. Marcucci, A. S. Ruppert et al., “Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B study,” Journal of Clinical Oncology, vol. 24, no. 24, pp. 3904–3911, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Hildebrand, J. Tiefenbach, T. Heinzel, M. Grez, and A. B. Maurer, “Multiple regions of ETO cooperate in transcriptional repression,” Journal of Biological Chemistry, vol. 276, no. 13, pp. 9889–9895, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Lutterbach, J. J. Westendorf, B. Linggi et al., “ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors,” Molecular and Cellular Biology, vol. 18, no. 12, pp. 7176–7184, 1998. View at Scopus
  13. B. Lutterbach, D. Sun, J. Schuetz, and S. W. Hiebert, “The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein,” Molecular and Cellular Biology, vol. 18, no. 6, pp. 3604–3611, 1998. View at Scopus
  14. J. Zhang, B. A. Hug, E. Y. Huang et al., “Oligomerization of ETO is obligatory for corepressor interaction,” Molecular and Cellular Biology, vol. 21, no. 1, pp. 156–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Yan, E.-Y. Ahn, S. W. Hiebert, and D.-E. Zhang, “RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis,” Blood, vol. 113, no. 4, pp. 883–886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Kwok, B. B. Zeisig, J. Qiu, S. Dong, and C. W. So, “Transforming activity of AML1-ETO is independent of CBFβ3 and ETO interaction but requires formation of homo-oligomeric complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2853–2858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Liu, M. D. Cheney, J. J. Gaudet et al., “The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity,” Cancer Cell, vol. 9, no. 4, pp. 249–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Wichmann, Y. Becker, L. Chen-Wichmann et al., “Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity,” Blood, vol. 116, no. 4, pp. 603–613, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Wichmann, L. Chen, M. Heinrich et al., “Targeting the oligomerization domain of ETO interferes with RUNX1/ETO oncogenic activity in t(8;21)-positive leukemic cells,” Cancer Research, vol. 67, no. 5, pp. 2280–2289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Sloots and W. S. Wels, “Recombinant derivatives of the human high-mobility group protein HMGB2 mediate efficient nonviral gene delivery,” FEBS Journal, vol. 272, no. 16, pp. 4221–4236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. R. McWhirter, D. L. Galasso, and J. Y. J. Wang, “A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins,” Molecular and Cellular Biology, vol. 13, no. 12, pp. 7587–7595, 1993. View at Scopus
  22. J. S. Wadia, R. V. Stan, and S. F. Dowdy, “Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis,” Nature Medicine, vol. 10, no. 3, pp. 310–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. A. Rohl and R. L. Baldwin, “Comparison of nh exchange and circular dichroism as techniques for measuring the parameters of the helix-coil transition in peptides,” Biochemistry, vol. 36, no. 28, pp. 8435–8442, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. D. A. Mann and A. D. Frankel, “Endocytosis and targeting of exogenous HIV-1 Tat protein,” The EMBO Journal, vol. 10, no. 7, pp. 1733–1739, 1991. View at Scopus
  25. M. Tyagi, M. Rusnati, M. Presta, and M. Giacca, “Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans,” Journal of Biological Chemistry, vol. 276, no. 5, pp. 3254–3261, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. J. C. Mai, H. Shen, S. C. Watkins, T. Cheng, and P. D. Robbins, “Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate,” Journal of Biological Chemistry, vol. 277, no. 33, pp. 30208–30218, 2002. View at Scopus
  27. J. P. Richard, K. Melikov, E. Vives et al., “Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 585–590, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Plank, B. Oberhauser, K. Mechtler, C. Koch, and E. Wagner, “The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems,” Journal of Biological Chemistry, vol. 269, no. 17, pp. 12918–12924, 1994. View at Scopus
  29. M. S. Tallman, D. G. Gilliland, and J. M. Rowe, “Drug therapy for acute myeloid leukemia,” Blood, vol. 106, no. 4, pp. 1154–1163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Rowe and M. S. Tallman, “How I treat acute myeloid leukemia,” Blood, vol. 116, no. 17, pp. 3147–3156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Durual, A. Rideau, S. Ruault-Jungblut et al., “Lentiviral PU.1 overexpression restores differentiation in myeloid leukemic blasts,” Leukemia, vol. 21, no. 5, pp. 1050–1059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Dunne, C. Cullmann, M. Ritter et al., “siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts,” Oncogene, vol. 25, no. 45, pp. 6067–6078, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Haferlach, “Molecular genetic pathways as therapeutic targets in acute myeloid leukemia,” American Society of Hematology Education Program, pp. 400–411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Cammenga, S. Horn, U. Bergholz et al., “Extracellular KIT receptor mutants, commonly found in core binding factor AML, are constitutively active and respond to imatinib mesylate,” Blood, vol. 106, no. 12, pp. 3958–3961, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. E. Gorre, M. Mohammed, K. Ellwood et al., “Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification,” Science, vol. 293, no. 5531, pp. 876–880, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Heidenreich, J. Krauter, H. Riehle et al., “AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells,” Blood, vol. 101, no. 8, pp. 3157–3163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Zhou, W. Du, T. Koretsky, G. C. Bagby, and Q. Pang, “TAT-mediated intracellular delivery of NPM-derived peptide induces apoptosis in leukemic cells and suppresses leukemogenesis in mice,” Blood, vol. 112, no. 6, pp. 2474–2483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. C. M. Palermo, C. A. Bennett, A. C. Winters, and C. S. Hemenway, “The AF4-mimetic peptide, PFWT, induces necrotic cell death in MV4-11 leukemia cells,” Leukemia Research, vol. 32, no. 4, pp. 633–642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Essafi, A. D. Baudot, X. Mouska, J.-P. Cassuto, M. Ticchioni, and M. Deckert, “Cell-penetrating TAT-FOXO3 fusion proteins induce apoptotic cell death in leukemic cells,” Molecular Cancer Therapeutics, vol. 10, no. 1, pp. 37–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Huang, M. Ji, Z. Peng et al., “Purification of TAT-CC-HA protein under native condition, and its transduction analysis and biological effects on BCR-ABL positive cells,” Biomedicine and Pharmacotherapy, vol. 65, no. 3, pp. 183–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Racanicchi, C. Maccherani, C. Liberatore et al., “Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells,” The EMBO Journal, vol. 24, no. 6, pp. 1232–1242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Yan, E. Kanbe, L. F. Peterson et al., “A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis,” Nature Medicine, vol. 12, no. 8, pp. 945–949, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. S. R. Schwarze, A. Ho, A. Vocero-Akbani, and S. F. Dowdy, “In vivo protein transduction: delivery of a biologically active protein into the mouse,” Science, vol. 285, no. 5433, pp. 1569–1572, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Zorko and Ü. Langel, “Cell-penetrating peptides: mechanism and kinetics of cargo delivery,” Advanced Drug Delivery Reviews, vol. 57, no. 4, pp. 529–545, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Pan, B. Lu, H. Chen, and C. E. Bishop, “Reprogramming human fibroblasts using HIV-1 TAT recombinant proteins OCT4, SOX2, KLF4 and c-MYC,” Molecular Biology Reports, vol. 37, no. 4, pp. 2117–2124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. Gump and S. F. Dowdy, “TAT transduction: the molecular mechanism and therapeutic prospects,” Trends in Molecular Medicine, vol. 13, no. 10, pp. 443–448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Foerg, U. Ziegler, J. Fernandez-Carneado et al., “Decoding the entry of two novel cell-penetrating peptides in HeLa cells: lipid raft-mediated endocytosis and endosomal escape,” Biochemistry, vol. 44, no. 1, pp. 72–81, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Shi and J. S. Bartlett, “RGD inclusion in VP3 provides adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism,” Molecular Therapy, vol. 7, no. 4, pp. 515–525, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Drzeniek, G. Stöcker, B. Siebertz et al., “Heparan sulfate proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells,” Blood, vol. 93, no. 9, pp. 2884–2897, 1999. View at Scopus
  50. P. Vongchan and R. J. Linhardt, “Expression of human liver HSPGs on acute myeloid leukemia,” Clinical Immunology, vol. 122, no. 2, pp. 194–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. E. L. Snyder, C. C. Saenz, C. Denicourt et al., “Enhanced targeting and killing of tumor cells expressing the CXC chemokine receptor 4 by transducible anticancer peptides,” Cancer Research, vol. 65, no. 23, pp. 10646–10650, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. N. J. Caron, S. P. Quenneville, and J. P. Tremblay, “Endosome disruption enhances the functional nuclear delivery of Tat-fusion proteins,” Biochemical and Biophysical Research Communications, vol. 319, no. 1, pp. 12–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Tünnemann, R. M. Martin, S. Haupt, C. Patsch, F. Edenhofer, and M. C. Cardoso, “Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells,” The FASEB Journal, vol. 20, no. 11, pp. 1775–1784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Vivès, P. Brodin, and B. Lebleu, “A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus,” Journal of Biological Chemistry, vol. 272, no. 25, pp. 16010–16017, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Plank, W. Zauner, and E. Wagner, “Application of membrane-active peptides for drug and gene delivery across cellular membranes,” Advanced Drug Delivery Reviews, vol. 34, no. 1, pp. 21–35, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Borghouts, C. Kunz, and B. Groner, “Current strategies for the development of peptide-based anti-cancer therapeutics,” Journal of Peptide Science, vol. 11, no. 11, pp. 713–726, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. C. W. So and M. L. Cleary, “Dimerization: a versatile switch for oncogenesis,” Blood, vol. 104, no. 4, pp. 919–922, 2004. View at Publisher · View at Google Scholar · View at Scopus