About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 301540, 6 pages
http://dx.doi.org/10.1155/2013/301540
Research Article

Estradiol Synthesis and Release in Cultured Female Rat Bone Marrow Stem Cells

1Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, China
2Department of Physiology, Gannan Medical University, Ganzhou, Jiangxi 341000, China
3Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
4Institute of Chinese Minority Traditional Medicine, Minzu University of China, Bejing 100081, China

Received 11 September 2012; Revised 21 November 2012; Accepted 29 November 2012

Academic Editor: Thomas Skutella

Copyright © 2013 Dalei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Bone marrow stem cells (BMSCs) have the capacity to differentiate into mature cell types of multiple tissues. Thus, they represent an alternative source for organ-specific cell replacement therapy in degenerative diseases. In this study, we demonstrated that female rat BMSCs could differentiate into steroidogenic cells with the capacity for de novo synthesis of Estradiol-17β (E2) under high glucose culture conditions with or without retinoic acid (RA). The cultured BMSCs could express the mRNA and protein for P450arom, the enzyme responsible for estrogen biosynthesis. Moreover, radioimmunoassay revealed that BMSCs cultured in the present culture system produced and secreted significant amounts of testosterone, androstenedione, and E2. In addition, RA promoted E2 secretion but did not affect the levels of androgen. These results indicate that BMSCs can synthesize and release E2 and may contribute to autologous transplantation therapy for estrogen deficiency.