About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 303486, 9 pages
http://dx.doi.org/10.1155/2013/303486
Research Article

Molecular Characterization of TP53 Gene in Human Populations Exposed to Low-Dose Ionizing Radiation

1Laboratory of Human and Medical Genetics, Biological Sciences Institute, Federal University of Pará (UFPA), Augusto Correa Street, Number 01, CEP 66075-110 Belém, PA, Brazil
2Epstein-Barr Virus Laboratory, Virology Section, Evandro Chagas Institute, BR-316 Highway Km 7, CEP 67030-000 Ananindeua, PA, Brazil
3Human Cytogenetics Laboratory, Biological Sciences Institute, Federal University of Pará (UFPA), Augusto Correa Street, Number 01, CEP 66075-110 Belém, PA, Brazil

Received 1 November 2012; Revised 19 December 2012; Accepted 24 December 2012

Academic Editor: Thomas Liehr

Copyright © 2013 Igor Brasil-Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Ionizing radiation, such as that emitted by uranium, may cause mutations and consequently lead to neoplasia in human cells. The TP53 gene acts to maintain genomic integrity and constitutes an important biomarker of susceptibility. The present study investigated the main alterations observed in exons 4, 5, 6, 7, and 8 of the TP53 gene and adjacent introns in Amazonian populations exposed to radioactivity. Samples were collected from 163 individuals. Occurrence of the following alterations was observed: (i) a missense exchange in exon 4 (Arg72Pro); (ii) 2 synonymous exchanges, 1 in exon 5 (His179His), and another in exon 6 (Arg213Arg); (iii) 4 intronic exchanges, 3 in intron 7 (C → T at position 13.436; C → T at position 13.491; T → G at position 13.511) and 1 in intron 8 (T → G at position 13.958). Alteration of codon 72 was found to be an important risk factor for cancer development ( ; ; CI: 1.29–32.64) when adjusted for age and smoking. Thus, TP53 gene may be an important biomarker for carcinogenesis susceptibility in human populations exposed to ionizing radiation.