About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 303486, 9 pages
http://dx.doi.org/10.1155/2013/303486
Research Article

Molecular Characterization of TP53 Gene in Human Populations Exposed to Low-Dose Ionizing Radiation

1Laboratory of Human and Medical Genetics, Biological Sciences Institute, Federal University of Pará (UFPA), Augusto Correa Street, Number 01, CEP 66075-110 Belém, PA, Brazil
2Epstein-Barr Virus Laboratory, Virology Section, Evandro Chagas Institute, BR-316 Highway Km 7, CEP 67030-000 Ananindeua, PA, Brazil
3Human Cytogenetics Laboratory, Biological Sciences Institute, Federal University of Pará (UFPA), Augusto Correa Street, Number 01, CEP 66075-110 Belém, PA, Brazil

Received 1 November 2012; Revised 19 December 2012; Accepted 24 December 2012

Academic Editor: Thomas Liehr

Copyright © 2013 Igor Brasil-Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. T. Natarajan, “Mechanisms for induction of mutations and chromosome alterations,” Environmental Health Perspectives, vol. 101, no. 3, pp. 225–229, 1993. View at Scopus
  2. A. T. Natarajan, “Techniques for biomonitoring of human populations for genetic effects,” Revista Brasileira de Genetica, vol. 16, no. 3, pp. 841–847, 1993. View at Scopus
  3. R. Iyer and B. E. Lehnert, “Effects of ionizing radiation in targeted and nontargeted cells,” Archives of Biochemistry and Biophysics, vol. 376, no. 1, pp. 14–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. I. D. Louro, J. C. Llerena Jr., M. S. Vieira de Melo, P. Ashton-Prolla, and N. Conforty-Fróes, Genética Molecular do Cancer, MSG Produção Editorial, São Paulo, Brazil, 2nd edition, 2002.
  5. W. W. Au, G. S. Wilkinson, S. K. Tyring et al., “Monitoring populations for DNA repair deficiency and for cancer susceptibility,” Environmental Health Perspectives, vol. 104, no. 3, pp. 579–584, 1996. View at Scopus
  6. D. Pawel, D. Preston, D. Pierce, and J. Cologne, “Improved estimates of cancer site-specific risks for A-bomb survivors,” Radiation Research, vol. 169, no. 1, pp. 87–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Bleise, P. R. Danesi, and W. Burkart, “Properties, use and health effects of depleted uranium (DU): a general overview,” Journal of Environmental Radioactivity, vol. 64, no. 2-3, pp. 93–112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Camacho, R. Devesa, I. Vallés et al., “Distribution of uranium isotopes in surface water of the Llobregat river basin (Northeast Spain),” Journal of Environmental Radioactivity, vol. 101, no. 12, pp. 1048–1054, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Servomaa and T. Rytomaa, ActivAtion of Oncogenes By UrAnium Aerosols: A in Vitro Study, J B Reytan, New York, NY, USA, 1989.
  10. K. Servomaa and T. Rytomaa, “Malignant transformation of mouse fibroblasts by uranium aerosols released from Chernobyl,” in Frontiers in Radiation Biology, E. Riklis, Ed., pp. 229–234, Balaban Publishers, Weinheim, Germany, 1990.
  11. A. C. Miller, W. F. Blakely, D. Livengood et al., “Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride,” Environmental Health Perspectives, vol. 106, no. 8, pp. 465–471, 1998. View at Scopus
  12. M. Brown, “Toxicological assessments of Gulf War veterans,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1468, pp. 649–679, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Milacic, D. Petrovic, D. Jovicic, R. Kovacevic, and J. Simic, “Examination of the health status of population from depleted-uranium-contaminated regions,” Environmental Research, vol. 95, pp. 2–10, 2004. View at Publisher · View at Google Scholar
  14. A. Patel, “Health in the Middle East: no strong link between depleted uranium and cancer,” British Medical Journal, vol. 333, article 971.3, 2006. View at Scopus
  15. INB-Nuclear Industries of Brazil, 2009, http://www.inb.gov.br/.
  16. GenBank, 2010, http://www.ncbi.nlm.nih.gov/.
  17. IBGE, “Brazilian Institute of Geography and Statistics: Brazilian maps,” 2011, http://www.ibge.gov.br/ibgeteen/mapas/index.html.
  18. NASA, “National Aeronautics and Space Administration: Satellite photo made in 2002,” 2011, http://visibleearth.nasa.gov/view_rec.php?id=2433.
  19. V. P. Melo, Avaliação da Concentração do 222Rn Nos Ambientes Internos e Externos em Residêncas do Município de MontE Alegre, PA, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil, 1999.
  20. B. Ponnaiya, G. Jenkins-Baker, A. Bigelow, S. Marino, and C. R. Geard, “Detection of chromosomal instability in α-irradiated and bystander human fibroblasts,” Mutation Research, vol. 568, no. 1, pp. 41–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Geva-Zatorsky, N. Rosenfeld, S. Itzkovitz et al., “Oscillations and variability in the p53 system,” Molecular Systems Biology, vol. 2, article 33, 2006. View at Scopus
  22. A. Efeyan and M. Serrano, “p53: guardian of the genome and policeman of the oncogenes,” Cell Cycle, vol. 6, no. 9, pp. 1006–1010, 2007. View at Scopus
  23. M. Oren and V. Rotter, “Introduction. p53: the first twenty years,” Cellular and Molecular Life Sciences, vol. 55, no. 1, pp. 9–11, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. L. A. Donehower, M. Harvey, B. L. Slagle et al., “Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours,” Nature, vol. 356, no. 6366, pp. 215–221, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Vogelstein, D. Lane, and A. J. Levine, “Surfing the p53 network,” Nature, vol. 408, no. 6810, pp. 307–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Alsbeih, N. Al-Harbi, M. Al-Buhairi, K. Al-Hadyan, and M. Al-Hamed, “Association between TP53 codon 72 single-nucleotide polymorphism and radiation sensitivity of human fibroblasts,” Radiation Research, vol. 167, no. 5, pp. 535–540, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Szymańska and P. Hainaut, “TP53 and mutations in human cancer,” Acta Biochimica Polonica, vol. 50, no. 1, pp. 231–238, 2003. View at Scopus
  28. C. V. de Moura Gallo, G. Azevedo e Silva Mendonça, E. de Moraes, M. Olivier, and P. Hainaut, “TP53 mutations as biomarkers for cancer epidemiology in Latin America: current knowledge and perspectives,” Mutation Research: Reviews in Mutation Research, vol. 589, no. 3, pp. 192–207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Petitjean, E. Mathe, S. Kato et al., “Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database,” Human Mutation, vol. 28, no. 6, pp. 622–629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Brant, M. Hoffmann, A. Kanappilly, T. Görögh, and S. Gottschlich, “p53 codon 72 polymorphism in squamous cell carcinoma of the head and neck region,” Anticancer Research, vol. 27, no. 5, pp. 3301–3305, 2007. View at Scopus
  31. A. Fernández-Rubio, M. F. López-Cima, P. González-Arriaga et al., “The TP53 Arg72Pro polymorphism and lung cancer risk in a population of Northern Spain,” Lung Cancer, vol. 61, no. 3, pp. 309–316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Cao, J. H. Song, Y. K. Park et al., “The p53 codon 72 polymorphism and susceptibility to colorectal cancer in Korean patients,” Neoplasma, vol. 56, no. 2, pp. 114–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. V. Lazar, F. Hazard, F. Bertin, N. Janin, D. Bellet, and B. Bressac, “Simple sequence repeat polymorphism within the p53 gene,” Oncogene, vol. 8, no. 6, pp. 1703–1705, 1993. View at Scopus
  34. S. Wang-Gohrke, H. Becher, R. Kreienberg, I. B. Runnebaum, and J. Chang-Claude, “Intron 3 16 bp duplication polymorphism of p53 is associated with an increased risk for breast cancer by the age of 50 years,” Pharmacogenetics, vol. 12, no. 3, pp. 269–272, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Gemignani, V. Moreno, S. Landi et al., “A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA,” Oncogene, vol. 23, no. 10, pp. 1954–1956, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Wu, H. Zhao, C. I. Amos et al., “p53 Genotypes and haplotypes associated with lung cancer susceptibility and ethnicity,” Journal of the National Cancer Institute, vol. 94, no. 9, pp. 681–690, 2002. View at Scopus
  37. R. Birgander, A. Själander, A. Rannug et al., “P53 polymorphisms and haplotypes in lung cancer,” Carcinogenesis, vol. 16, no. 9, pp. 2233–2236, 1995. View at Publisher · View at Google Scholar