About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 309769, 10 pages
http://dx.doi.org/10.1155/2013/309769
Research Article

Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes

Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil

Received 28 September 2012; Accepted 12 December 2012

Academic Editor: Neelu Nawani

Copyright © 2013 Juliana Pacheco da Rosa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Y. Zhu, J. Lubeck, and J. J. Kilbane, “Characterization of microbial communities in gas industry pipelines,” Applied and Environmental Microbiology, vol. 69, no. 9, pp. 5354–5363, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Zuo, “Biofilms: strategies for metal corrosion inhibition employing microorganisms,” Applied Microbiology and Biotechnology, vol. 76, no. 6, pp. 1245–1253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. J. Feio, V. Rainha, M. A. Reis, A. R. Lino, and I. T. E. Fonseca, “The influence of the Desulfovibrio desulfuricans 14 ATCC 27774 on the corrosion of mild steel,” Materials and Corrosion—Werkstoffe und Korrosion, vol. 51, no. 10, pp. 691–697, 2000. View at Scopus
  4. M. Magot, B. Ollivier, and B. K. C. Patel, “Microbiology of petroleum reservoirs,” Antonie van Leeuwenhoek, vol. 77, no. 2, pp. 103–116, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Korenblum, I. Von Der Weid, A. L. S. Santos et al., “Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus H2O-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil,” Journal of Applied Microbiology, vol. 98, no. 3, pp. 667–675, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Von Der Weid, E. Korenblum, D. Jurelevicius et al., “Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil,” Journal of Microbiology and Biotechnology, vol. 18, no. 1, pp. 5–14, 2008. View at Scopus
  7. L. R. Gardner and P. S. Stewart, “Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms,” Journal of Industrial Microbiology and Biotechnology, vol. 29, no. 6, pp. 354–360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. S. Branda, J. E. González-Pastor, E. Dervyn, S. D. Ehrlich, R. Losick, and R. Kolter, “Genes involved in formation of structured multicellular communities by Bacillus subtilis,” Journal of Bacteriology, vol. 186, no. 12, pp. 3970–3979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. F. Jack, D. B. Ringelberg, and D. C. White, “Differential corrosion rates of carbon steel by combinations of Bacillus sp., Hafnia alvei and Desulfovibrio gigas established by phospholipid analysis of electrode biofilm,” Corrosion Science, vol. 33, no. 12, pp. 1843–1853, 1992. View at Scopus
  10. H. A. Videla and L. K. Herrera, “Microbiologically influenced corrosion: looking to the future,” International Microbiology, vol. 8, no. 3, pp. 169–180, 2005. View at Scopus
  11. J. Larsen, P. F. Sanders, and R. E. Talbot, “Experience with the use of tetrakis hydroxymethyl phosphonium sulfate (THPS) for the control of downhole hydrogen sulfide,” in Proceedings of the Corrosion Conference, NACE, March 2000.
  12. H. A. Videla, “Prevention and control of biocorrosion,” International Biodeterioration and Biodegradation, vol. 49, no. 4, pp. 259–270, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Zuo, D. Örnek, B. C. Syrett et al., “Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water,” Applied Microbiology and Biotechnology, vol. 64, no. 2, pp. 275–283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Berdy, “Bioactive microbial metabolites,” Journal of Antibiotics (Tokyo), vol. 58, pp. 1–26, 2005.
  15. R. Ben Ameur Mehdi, S. Sioud, L. Fourati Ben Fguira, S. Bejar, and L. Mellouli, “Purification and structure determination of four bioactive molecules from a newly isolated Streptomyces sp. TN97 strain,” Process Biochemistry, vol. 41, no. 7, pp. 1506–1513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Sun, K. N. Maloney, S. J. Nam et al., “Fijimycins A-C, three antibacterial etamycin-class depsipeptides from a marine-derived Streptomyces sp,” Bioorganic & Medicinal Chemistry, vol. 19, pp. 6557–6562, 2011.
  17. L. P. Trenozhnikova, A. K. Khasenova, A. S. Balgimbaeva et al., “Characterization of the antibiotic compound no. 70 produced by Streptomyces sp. IMV-70,” The Scientific World Journal, vol. 2012, 8 pages, 2012.
  18. Z. Q. Xiong, Z. P. Zhang, J. H. Li, S. J. Wei, and G. Q. Tua, “Characterization of Streptomyces padanus JAU4234, a producer of actinomycin X2, fungichromin, and a new polyene macrolide antibiotic,” Applied and Environmental Microbiology, vol. 78, no. 2, pp. 589–592, 2012.
  19. P. K. Jain and P. C. Jain, “Isolation, characterization and antifungal activity of Streptomyces sampsonii GS 1322,” Indian Journal of Experimental Biology, vol. 45, no. 2, pp. 203–206, 2007. View at Scopus
  20. B. Prapagdee, C. Kuekulvong, and S. Mongkolsuk, “Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi,” International Journal of Biological Sciences, vol. 4, no. 5, pp. 330–337, 2008. View at Scopus
  21. Y. Ouhdouch, M. Barakate, and C. Finance, “Actinomycetes of Moroccan habitats: isolation and screening for antifungal activities,” European Journal of Soil Biology, vol. 37, no. 2, pp. 69–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. L. T. A. S. Semêdo, A. A. Linhares, R. C. Gomes et al., “Isolation and characterization of actinomycetes from Brazilian tropical soils,” Microbiological Research, vol. 155, no. 4, pp. 291–299, 2001. View at Scopus
  23. R. R. R. Coelho, A. Lopes, L. T. A. S. Semêdo, and F. S. Cruz, “Culture filtrates of actinomycetes isolated from tropical soils inhibit Trypanosoma cruzi replication in vitro,” Revista de Microbiologia, vol. 26, no. 4, pp. 307–313, 1995.
  24. S. A. Reis, L. V. Costa, E. D. C. Cavalcanti et al., “Protein synthesis inhibitory activity in culture filtrates from new strains of Streptomyces isolated from Brazilian tropical soils,” Letters in Applied Microbiology, vol. 37, no. 2, pp. 138–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. D. R. Sacramento, R. R. R. Coelho, M. D. Wigg et al., “Antimicrobial and antiviral activities of an actinomycete (Streptomyces sp.) isolated from a Brazilian tropical forest soil,” World Journal of Microbiology and Biotechnology, vol. 20, no. 3, pp. 225–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. E. B. Shirling and D. Gottlieb, “Methods for characterization of Streptomyces species,” International Journal of Systematic Bacteriology, vol. 16, no. 3, pp. 313–340, 1966.
  27. G. V. Sebastián, Avaliação da população bacteriana presente em um reservatório de petróleo situado em águas profundas brasileiras, com ênfase no isolamento e caracterização de estirpes de Bacillus [dissertação], Universidade Federal do Rio de Janeiro, 1999.
  28. R. F. Schleif and P. C. Wensink, Practical Methods in Molecular Biology, Springer, New York, NY, USA, 1981.
  29. M. J. Feio, V. Zinkevich, I. B. Beech et al., “Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 5, pp. 1747–1752, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. R. Postgate, The Sulfate-Reducing Bacteria, Cambridge University Press, Cambridge, UK, 1984.
  31. A. S. Rosado and L. Seldin, “Production of a potentially novel anti-microbial substance by Bacillus polymyxa,” World Journal of Microbiology & Biotechnology, vol. 9, no. 5, pp. 521–528, 1993. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Von Der Weid, D. S. Alviano, A. L. S. Santos, R. M. A. Soares, C. S. Alviano, and L. Seldin, “Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi,” Journal of Applied Microbiology, vol. 95, no. 5, pp. 1143–1151, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Valente, F. C. Gouveia, G. A. Lemos, D. Pimentel, L. C. Mendonça-Hagler, and A. N. Hagler, “PCR-amplified ITS length variation within the yeast genus Metschnikowia,” Journal of General and Applied Microbiology, vol. 43, no. 3, pp. 179–181, 1997. View at Scopus
  34. W. G. Weisburg, S. M. Barns, D. A. Pelletier, and D. J. Lane, “16S ribosomal DNA amplification for phylogenetic study,” Journal of Bacteriology, vol. 173, no. 2, pp. 697–703, 1991. View at Scopus
  35. F. E. Löffler, Q. Sun, J. Li, and J. M. Tiedje, “16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species,” Applied and Environmental Microbiology, vol. 66, no. 4, pp. 1369–1374, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, NY, USA, 1989.
  37. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  38. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Cashion, M. A. Holder Franklin, J. McCully, and M. Franklin, “A rapid method for the base ratio determination of bacterial DNA,” Analytical Biochemistry, vol. 81, no. 2, pp. 461–466, 1977. View at Scopus
  40. J. De Ley, H. Cattoir, and A. Reynaerts, “The quantitative measurement of DNA hybridization from renaturation rates.,” European Journal of Biochemistry, vol. 12, no. 1, pp. 133–142, 1970. View at Scopus
  41. V. A. R. Huss, H. Festl, and K. H. Schleifer, “Studies on the spectrophotometric determination of DNA hybridization from renaturation rates,” Systematic and Applied Microbiology, vol. 4, no. 2, pp. 184–192, 1983. View at Scopus
  42. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  43. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  44. R. F. de Souza, R. R. R. Coelho, A. Macrae et al., “Streptomyces lunalinharesii sp. nov., a chitinolytic streptomycete isolated from cerrado soil in Brazil,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 12, pp. 2774–2778, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Lanoot, M. Vancanneyt, B. Hoste et al., “Grouping of streptomycetes using 16S-ITS RFLP fingerprinting,” Research in Microbiology, vol. 156, no. 5-6, pp. 755–762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. G. Dastager, C. J. Kim, J. C. Lee, D. Agasar, D. J. Park, and W. J. Li, “Streptomyces deccanensis sp. nov., an alkaliphilic species isolated from soil,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 5, pp. 1089–1093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. L. G. Wayne, D. J. Brenner, R. R. Colwell et al., “Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics,” International Journal of Systematic Bacteriology, vol. 37, no. 4, pp. 463–464, 1987.
  48. R. C. Gomes, L. T. A. S. Sêmedo, R. M. A. Soares et al., “Purification of a thermostable endochitinase from Streptomyces RC1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi,” Journal of Applied Microbiology, vol. 90, no. 4, pp. 653–661, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Fróes, A. Macrae, J. Rosa et al., “Selection of a Streptomyces strain able to produce cell wall degrading enzymes and active against Sclerotinina sclerotiorum,” Journal of Microbiology, vol. 50, no. 5, pp. 798–806, 2012.
  50. D. Thakur, T. C. Bora, G. N. Bordoloi, and S. Mazumdar, “Influence of nutrition and culturing conditions for optimum growth and antimicrobial metabolite production by Streptomyces sp. 201,” Journal de Mycologie Medicale, vol. 19, no. 3, pp. 161–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Yu, Q. Liu, Q. Liu et al., “Effect of liquid culture requirements on antifungal antibiotic production by Streptomyces rimosus MY02,” Bioresource Technology, vol. 99, no. 6, pp. 2087–2091, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Eckart, “Mass spectrometry of cyclic peptides,” Mass Spectrometry Reviews, vol. 13, no. 1, pp. 23–55, 1994. View at Scopus
  53. A. Cherif, S. Chehimi, F. Limem et al., “Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9,” Journal of Applied Microbiology, vol. 95, no. 5, pp. 990–1000, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Cladera-Olivera, G. R. Caron, and A. Brandelli, “Bacteriocin-like substance production by Bacillus licheniformis strain P40,” Letters in Applied Microbiology, vol. 38, no. 4, pp. 251–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Kavitha, S. Senthilkumar, S. Gnanamanickam, M. Inayathullah, and R. Jayakumar, “Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16,” Process Biochemistry, vol. 40, no. 10, pp. 3236–3243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. L. He, W. L. Chen, and Y. Liu, “Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12,” Microbiological Research, vol. 161, no. 4, pp. 321–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Guo, E. Huang, C. Yuan, L. Zhang, and A. E. Yousef, “Isolation of a Paenibacillussp. strain and structural elucidation of its broad-spectrum lipopeptide antibiotic,” Applied and Environmental Microbiology, vol. 78, no. 9, pp. 3156–3165, 2012.
  58. M. Atanassova, Y. Choiset, M. Dalgalarrondo et al., “Isolation and partial biochemical characterization of a proteinaceous anti-bacteria and anti-yeast compound produced by Lactobacillus paracasei subsp. paracasei strain M3,” International Journal of Food Microbiology, vol. 87, no. 1-2, pp. 63–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Ohmomo, S. Murata, N. Katayama et al., “Purification and some characteristics of enterocin ON-157, a bacteriocin produced by Enterococcus faecium NIAI 157,” Journal of Applied Microbiology, vol. 88, no. 1, pp. 81–89, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Meincken, D. L. Holroyd, and M. Rautenbach, “Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 10, pp. 4085–4092, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Hartmann, M. Berditsch, J. Hawecker, M. F. Ardakani, D. Gerthsen, and A. S. Ulrich, “Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 8, pp. 3132–3142, 2010. View at Publisher · View at Google Scholar · View at Scopus