About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 314091, 10 pages
http://dx.doi.org/10.1155/2013/314091
Research Article

Heparin and Carboxymethylchitosan Metal Nanoparticles: An Evaluation of Their Cytotoxicity

1Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, 21100 Varese, Italy
2Dipartimento di Scienze Teoriche ed Applicate, Università dell'Insubria, 21100 Varese, Italy
3Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta,” Politecnico di Milano, 20131 Milano, Italy
4Interuniversity Center “The Protein Factory,” Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, 20131 Milano, Italy
5Division of Oncology and Hematology, Texas Tech University Health Sciences Center, Lubbock, TX 79409, USA

Received 23 October 2012; Revised 3 January 2013; Accepted 3 January 2013

Academic Editor: Xudong Huang

Copyright © 2013 Adriana Bava et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. Cattaneo, R. Gornati, E. Sabbioni et al., “Nanotechnology and human health: risks and benefits,” Journal of Applied Toxicology, vol. 30, no. 8, pp. 730–744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Eidi, O. Joubert, G. Attik et al., “Cytotoxicity assessment of heparin nanoparticles in NR8383 macrophages,” International Journal of Pharmaceutics, vol. 396, no. 1-2, pp. 156–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Kemp and R. J. Linhardt, “Heparin-based nanoparticles,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 2, no. 1, pp. 77–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. V. K. Mourya, N. N. Inamdar, and A. Tiwari, “Carboxymethyl chitosan and its applications,” Advanced Materials Letters, vol. 1, no. 1, pp. 11–33, 2010.
  5. R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jérôme, and V. Préat, “Chitosan and chitosan derivatives in drug delivery and tissue engineering,” Advances in Polymer Science, vol. 244, pp. 19–44, 2011.
  6. A. Zhu, L. Yuan, and T. Liao, “Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan,” International Journal of Pharmaceutics, vol. 350, no. 1-2, pp. 361–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Y. Hwang, I. S. Kim, I. C. Kwon, and Y. H. Kim, “Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles,” Journal of Controlled Release, vol. 128, no. 1, pp. 23–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Dinarvand, N. Sepehri, S. Manoochehri, H. Rouhani, and F. Atyabi, “Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents,” International Journal of Nanomedicine, vol. 6, pp. 877–895, 2011.
  9. C. E. Mora-Huertas, H. Fessi, and A. Elaissari, “Polymer-based nanocapsules for drug delivery,” International Journal of Pharmaceutics, vol. 385, no. 1-2, pp. 113–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Bava, R. Gornati, F. Cappellini, L. Caldinelli, L. Pollegioni, and G. Bernardini, “D-amino acid oxidase-nanoparticle system: a potential novel approach for cancer enzymatic therapy,” Nanomedicine, 2013. View at Publisher · View at Google Scholar
  11. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Singh and H. S. Nalwa, “Nanotechnology and health safety - Toxicity and risk assessments of nanostructured materials on human health,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 9, pp. 3048–3070, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Papis, R. Gornati, J. Ponti, M. Prati, E. Sabbioni, and G. Bernardini, “Gene expression in nanotoxicology: a search for biomarkers of exposure to cobalt particles and ions,” Nanotoxicology, vol. 1, no. 3, pp. 198–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Papis, R. Gornati, M. Prati, J. Ponti, E. Sabbioni, and G. Bernardini, “Gene expression in nanotoxicology research: analysis by differential display in BALB3T3 fibroblasts exposed to cobalt particles and ions,” Toxicology Letters, vol. 170, no. 3, pp. 185–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Di Gioacchino, N. Verna, L. Di Giampaolo et al., “Immunotoxicity and sensitizing capacity of metal compounds depend on speciation,” International Journal of Immunopathology and Pharmacology, vol. 20, no. 2, pp. 15–22, 2007. View at Scopus
  16. A. Munoz and M. Costa, “Elucidating the mechanisms of nickel compound uptake: a review of particulate and nano-nickel endocytosis and toxicity,” Toxicology and Applied Pharmacology, vol. 260, pp. 1–16, 2012.
  17. A. G. . Cattaneo, R. Gornati, M. Chiriva-Internati, and G. Bernardini, “Ecotoxicology of nanomaterials: the role of invertebrate testing,” Invertebrate Survival Journal, vol. 6, pp. 78–97, 2009.
  18. Y. Xu, Z. Wen, and Z. Xu, “Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism,” Anticancer Research, vol. 29, no. 12, pp. 5103–5109, 2009. View at Scopus
  19. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature, vol. 407, no. 6803, pp. 496–499, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. L. D. Pachón and G. Rothenberg, “Transition-metal nanoparticles: synthesis, stability and the leaching issue,” Applied Organometallic Chemistry, vol. 22, no. 6, pp. 288–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Moreno-Mañas and R. Pleixats, “Formation of carbon-carbon bonds under catalysis by transition-metal nanoparticles,” Accounts of Chemical Research, vol. 36, no. 8, pp. 638–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Rafique, M. Idrees, A. Nasim, H. Akbar, and A. Athar, “Transition metal complexes as potential therapeutic agents,” Biotechnology and Molecular Biology Reviews, vol. 5, no. 2, pp. 38–45, 2010.
  23. A. Zhu, M. B. Chan-Park, S. Dai, and L. Li, “The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution,” Colloids and Surfaces B, vol. 43, no. 3-4, pp. 143–149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Y. Liang and L. M. Zhang, “Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan,” Biomacromolecules, vol. 8, no. 5, pp. 1480–1486, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. R. Kester, I. W. Duedall, D. N. Connors, and R. M. Pytkowicz, “Preparation of artificial sea water,” Limnology and Oceanography, vol. 12, no. 1, pp. 176–179, 1967.
  26. R. Bhattacharya and P. Mukherjee, “Biological properties of "naked" metal nanoparticles,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1289–1306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” Journal of Drug Delivery, vol. 2012, Article ID 751075, 12 pages, 2012. View at Publisher · View at Google Scholar
  28. J. L. Martinez-Hurtado, “Metallic nanoparticle block copolymer vesicles with enhanced optical properties,” Nanomaterials, vol. 1, pp. 20–30, 2011.
  29. P. Tartaj, M. Del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” Journal of Physics D, vol. 36, no. 13, pp. R182–R197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Kemp, A. Kumar, S. Mousa et al., “Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities,” Biomacromolecules, vol. 10, no. 3, pp. 589–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Khurshid, S. H. Kim, M. J. Bonder et al., “Development of heparin-coated magnetic nanoparticles for targeted drug delivery applications,” Journal of Applied Physics, vol. 105, no. 7, Article ID 07B308, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Sun, J. S. H. Lee, and M. Zhang, “Magnetic nanoparticles in MR imaging and drug delivery,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1252–1265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Veiseh, J. W. Gunn, and M. Zhang, “Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging,” Advanced Drug Delivery Reviews, vol. 62, no. 3, pp. 284–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Y. Lee, “Highly effective T2 MR contrast agent based on heparinized superparamagnetic iron oxide nanoparticles,” Macromolecular Research, vol. 19, no. 8, pp. 843–847, 2011.
  35. K. Lee, H. Lee, K. H. Bae, and T. G. Park, “Heparin immobilized gold nanoparticles for targeted detection and apoptotic death of metastatic cancer cells,” Biomaterials, vol. 31, no. 25, pp. 6530–6536, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. K. A. Min, F. Yu, V. C. Yang, X. Zhang, and G. R. Rosania, “Transcellular transport of heparin-coated magnetic iron oxide nanoparticles (Hep-MION) under the influence of an applied magnetic field,” Pharmaceutics, vol. 2, no. 2, pp. 119–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Villanueva, M. Cãete, A. G. Roca et al., “The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells,” Nanotechnology, vol. 20, no. 11, Article ID 115103, 9 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Sabbioni, S. Fortaner, M. Farina et al., “Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts,” Nanotoxicology, 2012. View at Publisher · View at Google Scholar
  39. C. Wilhelm and F. Gazeau, “Universal cell labelling with anionic magnetic nanoparticles,” Biomaterials, vol. 29, no. 22, pp. 3161–3174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Papis, F. Rossi, M. Raspanti et al., “Engineered cobalt oxide nanoparticles readily enter cells,” Toxicology Letters, vol. 189, no. 3, pp. 253–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Arami, Z. Stephen, O. Veiseh, and M. Zhang, “Chitosan-coated iron oxide nanoparticles for molecular imaging and drug delivery,” Advances in Polymer Science, vol. 243, pp. 63–184, 2011.
  42. X. G. Chen and H. J. Park, “Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions,” Carbohydrate Polymers, vol. 53, no. 4, pp. 355–359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. P. Zhu, N. Fang, M. B. Chan-Park, and V. Chan, “Interaction between O-carboxymethylchitosan and dipalmitoyl-sn-glycero-3- phosphocholine bilayer,” Biomaterials, vol. 26, no. 34, pp. 6873–6879, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Agrawal, G. J. Strijkers, and K. Nicolay, “Chitosan-based systems for molecular imaging,” Advanced Drug Delivery Reviews, vol. 62, no. 1, pp. 42–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Bhattacharya, M. Das, D. Mishra et al., “Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging,” Nanoscale, vol. 3, no. 4, pp. 1653–1662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. T. T. Trang Mai, P. T. Ha, H. N. Pham et al., “Chitosan and O-carboxymethylchitosan modified Fe3O4 for hyperthermic treatment,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 3, Article ID 015006, 5 pages, 2012. View at Publisher · View at Google Scholar
  47. C. F. Jones and D. W. Grainger, “In vitro assessments of nanomaterial toxicity,” Advanced Drug Delivery Reviews, vol. 61, no. 6, pp. 438–456, 2009. View at Publisher · View at Google Scholar · View at Scopus