About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 314654, 11 pages
http://dx.doi.org/10.1155/2013/314654
Research Article

Staphylococcus aureus Clinical Isolates: Antibiotic Susceptibility, Molecular Characteristics, and Ability to Form Biofilm

1Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
2Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
3Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
4Natural Products Research Center and Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
5Department of Applied Veterinary Medicine and Public Health, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080 8555, Japan

Received 30 May 2013; Accepted 24 July 2013

Academic Editor: Sou-ichi Makino

Copyright © 2013 N. Indrawattana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Periodic monitoring of Staphylococcus aureus characteristics in a locality is imperative as their drug-resistant variants cause treatment problem. In this study, antibiograms, prevalence of toxin genes (sea-see, seg-ser, seu, tsst-1, eta, etb, and etd), PFGE types, accessory gene regulator (agr) groups, and ability to form biofilm of 92 S. aureus Thailand clinical isolates were investigated. They were classified into 10 drug groups: groups 1–7 (56 isolates) were methicillin resistant (MRSA) and 8–10 (36 isolates) were methicillin sensitive (MSSA). One isolate did not have any toxin gene, 4 isolates carried one toxin gene (seq), and 87 isolates had two or more toxin genes. No isolate had see, etb, or tsst-1; six isolates had eta or etd. Combined seg-sei-sem-sen-seo of the highly prevalent egc locus was 26.1%. The seb, sec, sel, seu, and eta associated significantly with MSSA; sek was more in MRSA. The sek-seq association was 52.17% while combined sed-sej was not found. Twenty-three PFGE types were revealed, no association of toxin genes with PFGE types. All four agr groups were present; agr group 1 was predominant (58.70%) but agr group 2 strains carried more toxin genes and were more frequent toxin producers. Biofilm formation was found in 72.83% of the isolates but there was no association with antibiograms. This study provides insight information on molecular and phenotypic markers of Thailand S. aureus clinical isolates which should be useful for future active surveillance that aimed to control a spread of existing antimicrobial resistant bacteria and early recognition of a newly emerged variant.