About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 315980, 6 pages
http://dx.doi.org/10.1155/2013/315980
Research Article

Genotyping of CYP2C9 and VKORC1 in the Arabic Population of Al-Ahsa, Saudi Arabia

1Biological Sciences Department, College of Science, King Faisal University, Hofouf 31982, Saudi Arabia
2Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece

Received 28 October 2012; Revised 17 January 2013; Accepted 3 February 2013

Academic Editor: M. Ilyas Kamboh

Copyright © 2013 Abdullah M. Alzahrani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. G. Manolopoulos, “Pharmacogenomics and adverse drug reactions in diagnostic and clinical practice,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 7, pp. 801–814, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. V. G. Manolopoulos, G. Ragia, and A. Tavridou, “Pharmacogenomics of oral antidiabetic medications: current data and pharmacoepigenomic perspective,” Pharmacogenomics, vol. 12, no. 8, pp. 1161–1191, 2011.
  3. V. G. Manolopoulos, G. Ragia, and A. Tavridou, “Pharmacogenetics of coumarinic oral anticoagulants,” Pharmacogenomics, vol. 11, no. 4, pp. 493–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. http://www.cypalleles.ki.se/cyp2c9.htm.
  5. H. G. Xie, H. C. Prasad, R. B. Kim, and C. M. Stein, “CYP2C9 allelic variants: ethnic distribution and functional significance,” Advanced Drug Delivery Reviews, vol. 54, no. 10, pp. 1257–1270, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Y. Yuan, J. J. Chen, M. T. M. Lee et al., “A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity,” Human Molecular Genetics, vol. 14, no. 13, pp. 1745–1751, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Bodin, C. Verstuyft, D. A. Tregouet et al., “Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity,” Blood, vol. 106, no. 1, pp. 135–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. http://www.fda.gov/downloads/NewsEvents/Newsroom/MediaTranscripts/ucm123583.pdf.
  9. R. M. F. Van Schie, M. Wadelius, F. Kamali et al., “Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design,” Pharmacogenomics, vol. 10, no. 10, pp. 1687–1695, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. B. French, J. Joo, N. L. Geller et al., “Statistical design of personalized medicine interventions: the Clarification of Optimal Anticoagulation through Genetics (COAG) trial,” Trials, vol. 11, article 108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. J. Do, P. Lenzini, C. S. Eby et al., “Genetics informatics trial (GIFT) of warfarin to prevent deep vein thrombosis (DVT): rationale and study design,” Pharmacogenomics Journal, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Schelleman, N. A. Limdi, and S. E. Kimmel, “Ethnic differences in warfarin maintenance dose requirement and its relationship with genetics,” Pharmacogenomics, vol. 9, no. 9, pp. 1331–1346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Arvanitidis, G. Ragia, M. Iordanidou et al., “Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population,” Fundamental and Clinical Pharmacology, vol. 21, no. 4, pp. 419–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. Mirghani, G. Chowdhary, and G. Elghazali, “Distribution of the major Cytochrome P450 (CYP) 2C9 genetic variants in a Saudi population,” Basic and Clinical Pharmacology and Toxicology, vol. 109, no. 2, pp. 111–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. N. Saour, A. W. Shereen, B. J. Saour, and L. A. Mammo, “CYP2C9 polymorphism studies in the Saudi population,” Saudi Medical Journal, vol. 32, no. 4, pp. 347–352, 2011. View at Scopus
  16. S. I. Hamdy, M. Hiratsuka, K. Narahara et al., “Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population,” British Journal of Clinical Pharmacology, vol. 53, no. 6, pp. 596–603, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. M. O. Tanira, M. K. Al-Mukhaini, A. T. Al-Hinai, K. A. Al Balushi, and I. S. Ahmed, “Frequency of CYP2C9 genotypes among Omani patients receiving warfarin and its correlation with warfarin dose,” Community Genetics, vol. 10, no. 1, pp. 32–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Djaffar-Jureidini, N. Chamseddine, S. Keleshian, R. Naoufal, L. Zahed, and N. Hakime, “Pharmacogenetics of coumarin dosing: prevalence of CYP2C9 and VKORC1 polymorphisms in the Lebanese population,” Genetic Testing and Molecular Biomarkers, vol. 15, no. 11, pp. 827–830, 2011.
  19. L. Yang, W. Ge, F. Yu, and H. Zhu, “Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement—a systematic review and meta analysis,” Thrombosis Research, vol. 125, no. 4, pp. e159–e166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Tavridou, I. Petridis, M. Vasileiadis, et al., “Association of VKORC1 -1639 G>A polymorphism with carotid intima-media thickness in type 2 diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 94, no. 2, pp. 236–241, 2011.
  21. E. Efrati, H. Elkin, E. Sprecher, and N. Krivoy, “Distribution of CYP2C9 and VKORC1 risk alleles for warfarin sensitivity and resistance in the Israeli population,” Current Drug Safety, vol. 5, no. 3, pp. 190–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. F. El-Hazmi, A. R. Al-Swailem, A. S. Warsy, A. M. Al-Swailem, R. Sulaimani, and A. A. Al-Meshari, “Consanguinity among the Saudi Arabian population,” Journal of Medical Genetics, vol. 32, no. 8, pp. 623–626, 1995. View at Scopus
  23. B. Weir, “Disequilibrium,” in Genetic Data Analysis II, M. Sunderland, Ed., pp. 91–139, Sinaur Associates, 1996.
  24. http://www.graphpad.com/quickcalcs/contingency1.cfm.
  25. A. M. Yousef, N. R. Bulatova, W. Newman, et al., “Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population,” Molecular Biology Reports, vol. 39, no. 10, pp. 9423–9433, 2012.
  26. T. H. Sullivan-Klose, B. I. Ghanayem, D. A. Bell et al., “The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism,” Pharmacogenetics, vol. 6, no. 4, pp. 341–349, 1996. View at Scopus
  27. N. Božina, P. Granić, Z. Lalić, I. Tramišak, M. Lovrić, and A. Stavljenić-Rukavina, “Genetic polymorphisms of cytochromes P450: CYP2C9, CYP2C19, and CYP2D6 in Croatian population,” Croatian Medical Journal, vol. 44, no. 4, pp. 425–428, 2003. View at Scopus
  28. M. Burian, S. Grösch, I. Tegeder, and G. Geisslinger, “Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population,” British Journal of Clinical Pharmacology, vol. 54, no. 5, pp. 518–521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. G. Scordo, E. Aklillu, U. Yasar, M. L. Dahl, E. Spina, and M. Ingelman-Sundberg, “Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population,” British Journal of Clinical Pharmacology, vol. 52, no. 4, pp. 447–450, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. A. S. Aynacioglu, J. Brockmöller, S. Bauer et al., “Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin,” British Journal of Clinical Pharmacology, vol. 48, no. 3, pp. 409–415, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. A. C. Allabi, J. L. Gala, J. P. Desager, M. Heusterspreute, and Y. Horsmans, “Genetic polymorphisms of CYP2C9 and CYP2C19 in the Beninese and Belgian populations,” British Journal of Clinical Pharmacology, vol. 56, no. 6, pp. 653–657, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Nasu, T. Kubota, and T. Ishizaki, “Genetic analysis of CYP2C9 polymorphism in a Japanese population,” Pharmacogenetics, vol. 7, no. 5, pp. 405–409, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. R. Yoon, J. H. Shon, M. K. Kim et al., “Frequency of cytochrome P450 2C9 mutant alleles in a Korean population,” British Journal of Clinical Pharmacology, vol. 51, no. 3, pp. 277–280, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Zuo, D. Xia, L. Jia, and T. Guo, “Genetic polymorphisms of drug-metabolizing phase I enzymes CYP3A4, CYP2C9, CYP2C19 and CYP2D6 in Han, Uighur, Hui and Mongolian Chinese populations,” Pharmazie, vol. 67, no. 7, pp. 639–644, 2012.
  35. S. S. Lee, K. M. Kim, H. Thi-Le, S. S. Yea, I. J. Cha, and J. G. Shin, “Genetic polymorphism of CYP2C9 in a Vietnamese Kinh population,” Therapeutic Drug Monitoring, vol. 27, no. 2, pp. 208–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Zainuddin, L. K. Teh, A. W. M. Suhaimi, and R. Ismail, “Malaysian Indians are genetically similar to Caucasians: CYP2C9 polymorphism,” Journal of Clinical Pharmacy and Therapeutics, vol. 31, no. 2, pp. 187–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Kudzi, A. N. O. Dodoo, and J. J. Mills, “Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population,” BMC Medical Genetics, vol. 10, article 124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Zand, N. Tajik, A. S. Moghaddam, and I. Milanian, “Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Iranian population,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 1-2, pp. 102–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. A. Limdi, J. A. Goldstein, J. A. Blaisdell, T. M. Beasley, C. A. Rivers, and R. T. Acton, “Influence of CYP2C9 genotype on warfarin dose among African-Americans and European-Americans,” Personalized Medicine, vol. 4, no. 2, pp. 157–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Wadelius, L. Y. Chen, J. D. Lindh et al., “The largest prospective warfarin-treated cohort supports genetic forecasting,” Blood, vol. 113, no. 4, pp. 784–792, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Ragia, I. Petridis, A. Tavridou, D. Christakidis, and V. G. Manolopoulos, “Presence of CYP2C9*3 allele increases risk for hypoglycemia in Type 2 diabetic patients treated with sulfonylureas,” Pharmacogenomics, vol. 10, no. 11, pp. 1781–1787, 2009. View at Publisher · View at Google Scholar · View at Scopus