About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 317912, 11 pages
http://dx.doi.org/10.1155/2013/317912
Research Article

Development of Pineapple Microsatellite Markers and Germplasm Genetic Diversity Analysis

1Bioscience and Biotechnology College, Qiongzhou University, Sanya 572200, China
2Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
3Institute of Tropical Crop Variety Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
4South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China

Received 29 April 2013; Accepted 2 July 2013

Academic Editor: Momiao Xiong

Copyright © 2013 Suping Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Duval, J. L. Noyer, X. Perrier, C. D'Eeckenbrugge, and P. Hamon, “Molecular diversity in pineapple assessed by RFLP markers,” Theoretical and Applied Genetics, vol. 102, no. 1, pp. 83–90, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. C. De Fátima Ruas, P. M. Ruas, and J. R. S. Cabral, “Assessment of genetic relatedness of the genera Ananas and Pseudananas confirmed by RAPD markers,” Euphytica, vol. 119, no. 3, pp. 245–252, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. F. Duval, G. S. C. Buso, F. R. Ferreira et al., “Relationships in Ananas and other related genera using chloroplast DNA restriction site variation,” Genome, vol. 46, no. 6, pp. 990–1004, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Y. Kato, C. Nagai, P. H. Moore et al., “Intra-specific DNA polymorphism in pineapple (Ananas comosus (L.) Merr.) assessed by AFLP markers,” Genetic Resources and Crop Evolution, vol. 51, no. 8, pp. 815–825, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Popluechai, S. Onto, and P. D. Eungwanichayapant, “Relationships between some Thai cultivars of pineapple (Ananas comosus) revealed by RAPD analysis,” Songklanakarin Journal of Science and Technology, vol. 29, no. 6, pp. 1491–1497, 2007. View at Scopus
  6. T. Wöhrmann and K. Weising, “In silico mining for simple sequence repeat loci in a pineapple expressed sequence tag database and cross-species amplification of EST-SSR markers across Bromeliaceae,” Theoretical and Applied Genetics, vol. 123, no. 4, pp. 635–647, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Kinsuat and S. V. Kumar, “Polymorphic microsatellite and cryptic simple repeat sequence markers in pineapples (Ananas comosus var. comosus),” Molecular Ecology Notes, vol. 7, no. 6, pp. 1032–1035, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Ujino, T. Kawahara, Y. Tsumura, T. Nagamitsu, H. Yoshimaru, and W. Ratnam, “Development and polymorphism of simple sequence repeat DNA markers for Shorea curtisii and other Dipterocarpaceae species,” Heredity, vol. 81, no. 4, pp. 422–428, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. H.-B. Huang, Y.-Q. Song, M. Hsei et al., “Development and characterization of genetic mapping resources for the turkey (Meleagris gallopavo),” Journal of Heredity, vol. 90, no. 1, pp. 240–242, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. S. N. Nayak, H. Zhu, N. Varghese et al., “Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome,” Theoretical and Applied Genetics, vol. 120, no. 7, pp. 1415–1441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. P. J. Fisher, R. C. Gardner, and T. E. Richardson, “Single locus microsatellites isolated using 5 anchored PCR,” Nucleic Acids Research, vol. 24, no. 21, pp. 4369–4371, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Hayden and P. J. Sharp, “Sequence-tagged microsatellite profiling (STMP): a rapid technique for developing SSR markers,” Nucleic Acids Research, vol. 29, no. 8, article e43, 2001. View at Scopus
  13. M. J. Hayden and P. J. Sharp, “Targeted development of informative microsatellite (SSR) markers,” Nucleic Acids Research, vol. 29, no. 8, article e44, 2001. View at Scopus
  14. L. Ramsay, M. Macaulay, S. Degli Ivanissevich et al., “A simple sequence repeat-based linkage map of Barley,” Genetics, vol. 156, no. 4, pp. 1997–2005, 2000. View at Scopus
  15. L. F. Gao, J. F. Tang, H. W. Li, and J. Z. Jia, “Analysis of microsatellites in major crops assessed by computational and experimental approaches,” Molecular Breeding, vol. 12, no. 3, pp. 245–261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Porebski, L. G. Bailey, and B. R. Baum, “Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components,” Plant Molecular Biology Reporter, vol. 15, no. 1, pp. 8–15, 1997. View at Scopus
  17. R. T. Miller, A. G. Christoffels, C. Gopalakrishnan et al., “A comprehensive approach to clustering of expressed human gene sequence: the Sequence Tag Alignment and Consensus Knowledge base,” Genome Research, vol. 9, no. 11, pp. 1143–1155, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. J. G. Wetmur, “DNA Probes: applications of the principles of nucleic acid hybridization,” Critical Reviews in Biochemistry and Molecular Biology, vol. 26, pp. 227–259, 1991. View at Publisher · View at Google Scholar
  19. W. D. Ong, C. L. Y. Voo, and S. V. Kumar, “Development of ESTs and data mining of pineapple EST-SSRs,” Molecular Biology Reports, vol. 39, pp. 5889–5896, 2012. View at Publisher · View at Google Scholar
  20. R. L. Moyle, M. L. Crowe, J. Ripi-Koia, D. J. Fairbairn, and J. R. Botella, “PineappleDB: an online pineapple bioinformatics resource,” BMC Plant Biology, vol. 5, article 21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Botstein, R. L. White, M. Skolnick, and R. W. Davis, “Construction of a genetic linkage map in man using restriction fragment length polymorphisms,” American Journal of Human Genetics, vol. 32, no. 3, pp. 314–331, 1980. View at Scopus
  22. F. Yu, B.-H. Wang, S.-P. Feng, J.-Y. Wang, W.-G. Li, and Y.-T. Wu, “Development, characterization, and cross-species/genera transferability of SSR markers for rubber tree (Hevea brasiliensis),” Plant Cell Reports, vol. 30, no. 3, pp. 335–344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Y. Wang, L. S. Zheng, B. Z. Huang, W. L. Liu, and Y. T. Wu, “Development, characterization,and variability analysis of microsatellites from a commerical cultivar of Musa acuminate,” Genetic Resources and Crop Evolution, vol. 57, pp. 553–563, 2010. View at Publisher · View at Google Scholar
  24. O. P. Rajora, M. H. Rahman, S. Dayanandan, and A. Mosseler, “Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species,” Molecular and General Genetics, vol. 264, no. 6, pp. 871–882, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Rivera, K. J. Edwards, J. H. A. Barker et al., “Isolation and characterization of polymorphic microsatellites in Cocos nucifera L,” Genome, vol. 42, no. 4, pp. 668–675, 1999. View at Scopus
  26. M. A. Viruel and J. I. Hormaza, “Development, characterization and variability analysis of microsatellites in lychee (Litchi chinensis Sonn., Sapindaceae),” Theoretical and Applied Genetics, vol. 108, no. 5, pp. 896–902, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. P. K. Gupta, S. Rustgi, S. Sharma, R. Singh, N. Kumar, and H. S. Balyan, “Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat,” Molecular Genetics and Genomics, vol. 270, no. 4, pp. 315–323, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. R. K. Varshney, A. Graner, and M. E. Sorrells, “Genic microsatellite markers in plants: features and applications,” Trends in Biotechnology, vol. 23, no. 1, pp. 48–55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Rongwen, M. S. Akkaya, A. A. Bhagwat, U. Lavi, and P. B. Cregan, “The use of microsatellite DNA markers for soybean genotype identification,” Theoretical and Applied Genetics, vol. 90, no. 1, pp. 43–48, 1995. View at Scopus
  30. Q. J. Song, L. F. Marek, R. C. Shoemaker et al., “A new integrated genetic linkage map of the soybean,” Theoretical and Applied Genetics, vol. 109, no. 1, pp. 122–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. P. Feng, W. G. Li, H. S. Huang, J. Y. Wang, and Y. T. Wu, “Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis),” Molecular Breeding, vol. 23, no. 1, pp. 85–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Matsuoka, S. E. Mitchell, S. Kresovich, M. Goodman, and J. Doebley, “Microsatellites in Zea—variability, patterns of mutations, and use for evolutionary studies,” Theoretical and Applied Genetics, vol. 104, no. 2-3, pp. 436–450, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. M. V. Gutierrez, M. C. Vaz Patto, T. Huguet, J. I. Cubero, M. T. Moreno, and A. M. Torres, “Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops,” Theoretical and Applied Genetics, vol. 110, no. 7, pp. 1210–1217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. V. V. Symonds and A. M. Lloyd, “An analysis of microsatellite loci in Arabidopsis thaliana: mutational dynamics and application,” Genetics, vol. 165, no. 3, pp. 1475–1488, 2003. View at Scopus