About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 325806, 9 pages
http://dx.doi.org/10.1155/2013/325806
Research Article

Microbial Removal of the Pharmaceutical Compounds Ibuprofen and Diclofenac from Wastewater

1Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 EV Wageningen, The Netherlands
2Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
3RIKILT, Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands

Received 13 December 2012; Revised 1 October 2013; Accepted 2 October 2013

Academic Editor: Denise Freire

Copyright © 2013 Alette Langenhoff et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Ratola, A. Cincinelli, A. Alves, and A. Katsoyiannis, “Occurrence of organic microcontaminants in the wastewater treatment process. A mini review,” Journal of Hazardous Materials, vol. 239-240, pp. 1–18, 2012. View at Publisher · View at Google Scholar
  2. D. R. Kepp, U. G. Sidelmann, and S. H. Hansen, “Isolation and characterization of major phase I and II metabolites of ibuprofen,” Pharmaceutical Research, vol. 14, no. 5, pp. 676–680, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Ternes, “The occurrence of micopollutants in the aquatic environment: a new challenge for water management,” Water Science and Technology, vol. 55, no. 12, pp. 327–332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. P. Schwarzenbach, B. I. Escher, K. Fenner et al., “The challenge of micropollutants in aquatic systems,” Science, vol. 313, no. 5790, pp. 1072–1077, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Hernández Leal, N. Vieno, H. Temmink, G. Zeeman, and C. J. N. Buisman, “Occurrence of xenobiotics in gray water and removal in three biological treatment systems,” Environmental Science and Technology, vol. 44, no. 17, pp. 6835–6842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. GIP-databank. 2011.
  7. P. R. Gogate and A. B. Pandit, “A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions,” Advances in Environmental Research, vol. 8, no. 3-4, pp. 501–551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Boncz, H. Bruning, and W. H. Rulkens, “Innovative reactor technology for selective oxidation of toxic organic pollutants in wastewater by ozone,” Water Science and Technology, vol. 47, no. 10, pp. 17–24, 2003. View at Scopus
  9. I. Oller, S. Malato, and J. A. Sánchez-Pérez, “Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review,” Science of the Total Environment, vol. 409, no. 20, pp. 4141–4166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Kunkel and M. Radke, “Biodegradation of acidic pharmaceuticals in bed sediments: insight from a laboratory experiment,” Environmental Science and Technology, vol. 42, no. 19, pp. 7273–7279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. V. K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, and A. Nayak, “Pesticides removal from waste water by activated carbon prepared from waste rubber tire,” Water Research, vol. 45, no. 13, pp. 4047–4055, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. A. M. Langenhoff, “Bioremediation of areas polluted with chlorinated and non-chlorinated hydrocarbons,” Land Contamination and Reclamation, vol. 17, no. 3-4, pp. 619–625, 2009. View at Scopus
  13. Metcalf and Eddy, Wastewater Engineering, Treatment and Reuse, McGraw Hill, New York, NY, USA, 2003.
  14. J. Radjenović, M. Petrović, and D. Barceló, “Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment,” Water Research, vol. 43, no. 3, pp. 831–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Monteiro and A. A. Boxall, “Occurrence and fate of human pharmaceuticals in the environment,” in Reviews of Environmental Contamination and Toxicology, D. M. Whitacre, Ed., vol. 202, pp. 53–154, Springer, New York, NY, USA, 2010.
  16. M. Hijosa-Valsero, V. Matamoros, J. Martín-Villacorta, E. Bécares, and J. M. Bayona, “Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities,” Water Research, vol. 44, no. 5, pp. 1429–1439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Tiehm, N. Schmidt, M. Stieber, F. Sacher, L. Wolf, and H. Hoetzl, “Biodegradation of phmaceutical compounds and their occurrence in the Jordan valley,” Water Resources Management, vol. 25, no. 4, pp. 1195–1203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Carballa, F. Omil, T. Ternes, and J. M. Lema, “Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge,” Water Research, vol. 41, no. 10, pp. 2139–2150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. I. Rodarte-Morales, G. Feijoo, M. T. Moreira, and J. M. Lema, “Biotransformation of three pharmaceutical active compounds by the fungus Phanerochaete chrysosporium in a fed batch stirred reactor under air and oxygen supply,” Biodegradation, vol. 23, no. 1, pp. 145–156, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. R. W. Murdoch and A. G. Hay, “Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids,” Applied and Environmental Microbiology, vol. 71, no. 10, pp. 6121–6125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. W. P. de Bruin, M. J. J. Kotterman, M. A. Posthumus, G. Schraa, and A. J. B. Zehnder, “Complete biological reductive transformation of tetrachloroethene to ethane,” Applied and Environmental Microbiology, vol. 58, no. 6, pp. 1996–2000, 1992. View at Scopus
  22. U. Nübel, B. Engelen, A. Felsre et al., “Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis,” Journal of Bacteriology, vol. 178, no. 19, pp. 5636–5643, 1996. View at Scopus
  23. L. Raskin, J. M. Stromley, B. E. Rittmann, and D. A. Stahl, “Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens,” Applied and Environmental Microbiology, vol. 60, no. 4, pp. 1232–1240, 1994. View at Scopus
  24. D. A. Stahl and R. Amann, “Development and application of nucleic acid probes,” in Nucleic Acid Techniques in Bacterial Systematics, E. Stackebrandt and M. A. Goodfellow, Eds., pp. 205–248, John Wiley & Sons, New York, NY, USA, 1991.
  25. H. G. H. J. Heilig, E. G. Zoetendal, E. E. Vaughan, P. Marteau, A. D. L. Akkermans, and W. M. de Vos, “Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA,” Applied and Environmental Microbiology, vol. 68, no. 1, pp. 114–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. C. J. Sanguinetti, E. D. Neto, and A. J. G. Simpson, “Rapid silver staining and recovery of PCR products separated on polyacrylamide gels,” BioTechniques, vol. 17, no. 5, pp. 914–921, 1994. View at Scopus
  27. P. Fals, H. R. Andersen, A. Ledin, and J. La Cour Jansen, “Impact of solid retention time and nitrification capacity on the ability of activated sludge to remove pharmaceuticals,” Environmental Technology, vol. 33, no. 8, pp. 865–872, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Baccar, M. Sarrà, J. Bouzid, M. Feki, and P. Blánquez, “Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product,” Chemcal Engineering Journal, vol. 211-212, pp. 310–317, 2012.
  29. H. Liu, J. Zhang, N. Bao, C. Cheng, L. Ren, and C. Zhang, “Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: adsorption of trimethoprim,” Journal of Hazardous Materials, vol. 235-236, pp. 367–375, 2012.
  30. D. Simazaki, J. Fujiwara, S. Manabe, M. Matsuda, M. Asami, and S. Kunikane, “Removal of selected pharmaceuticals by chlorination, coagulation, sedimentation and powdered activated carbon treatment,” Water Science and Technology, vol. 58, no. 5, pp. 1129–1135, 2008. View at Scopus
  31. J. Rivera-Utrilla, G. Prados-Joya, M. Sánchez-Polo, M. A. Ferro-García, and I. Bautista-Toledo, “Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon,” Journal of Hazardous Materials, vol. 170, no. 1, pp. 298–305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. L. Carr, A. N. Morse, J. C. Zak, and T. A. Anderson, “Biological degradation of common pharmaceuticals and personal care products in soils with high water content,” Water, Air, and Soil Pollution, vol. 217, no. 1–4, pp. 127–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. K. M. Onesios and E. J. Bouwer, “Biological removal of pharmaceuticals and personal care products during laboratory soil aquifer treatment simulation with different primary substrate concentrations,” Water Research, vol. 46, no. 7, pp. 2365–2375, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Rauch-Williams, C. Hoppe-Jones, and J. E. Drewes, “The role of organic matter in the removal of emerging trace organic chemicals during managed aquifer recharge,” Water Research, vol. 44, no. 2, pp. 449–460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Barbieri, J. Carrera, C. Ayora et al., “Formation of diclofenac and sulfamethoxazole reversible transformation products in aquifer material under denitrifying conditions: batch experiments,” Science of the Total Environment, vol. 426, pp. 256–263, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Zwiener, S. Seeger, T. Glauner, and F. H. Frimmel, “Metabolites from the biodegradation of pharmaceutical residues of ibuprofen in biofilm reactors and batch experiments,” Analytical and Bioanalytical Chemistry, vol. 372, no. 4, pp. 569–575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Ferrando-Climent, N. Collad, G. Buttiglieri, et al., “Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment,” Science of the Total Environment, vol. 438, pp. 404–413, 2012.
  38. T. Kosjek, E. Heath, S. Pérez, M. Petrović, and D. Barceló, “Metabolism studies of diclofenac and clofibric acid in activated sludge bioreactors using liquid chromatography with quadrupole—time-of-flight mass spectrometry,” Journal of Hydrology, vol. 372, no. 1–4, pp. 109–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Pérez and D. Barceló, “First evidence for occurrence of hydroxylated human metabolites of diclofenac and aceclofenac in wastewater using QqLIT-MS and QqTOF-MS,” Analytical Chemistry, vol. 80, no. 21, pp. 8135–8145, 2008. View at Publisher · View at Google Scholar · View at Scopus