About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 326346, 10 pages
http://dx.doi.org/10.1155/2013/326346
Research Article

Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

1Clinical Medicine Education Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
2Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
3Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Received 3 July 2013; Revised 22 September 2013; Accepted 23 September 2013

Academic Editor: Joohun Ha

Copyright © 2013 Wei Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. Mizock and J. L. Falk, “Lactic acidosis in critical illness,” Critical Care Medicine, vol. 20, no. 1, pp. 80–93, 1992. View at Scopus
  2. N. Paquot, P. Schneiter, M. C. Cayeux et al., “Effects of infused sodium lactate on glucose and energy metabolism in healthy humans,” Diabete et Metabolisme, vol. 21, no. 5, pp. 345–352, 1995. View at Scopus
  3. K. S. Saladin, Anatomy and Physiology: The Unity of Form and Function, McGraw-Hill, New York, NY, USA, 3rd edition, 2004.
  4. P. Hochachka and M. Guppy, Arrest and Control of Biological Time, Harvard University Press, Cambridge, Mass, USA, 1987.
  5. E. Gnaiger, “Oxygen conformance of cellular respiration: a perspective of mitochondrial physiology,” Advances in Experimental Medicine and Biology, vol. 543, pp. 39–55, 2003. View at Scopus
  6. M. C. Hogan, S. S. Kurdak, and P. G. Arthur, “Effect of gradual reduction in O2 delivery on intracellular homeostasis in contracting skeletal muscle,” Journal of Applied Physiology, vol. 80, no. 4, pp. 1313–1321, 1996. View at Scopus
  7. G. R. S. Budinger, N. Chandel, Z. H. Shao et al., “Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes,” The American Journal of Physiology, vol. 270, no. 1, pp. L44–L53, 1996. View at Scopus
  8. R. M. Subramanian, N. Chandel, G. R. Scott Budinger, and P. T. Schumacker, “Hypoxic conformance of metabolism in primary rat hepatocytes: a model of hepatic hibernation,” Hepatology, vol. 45, no. 2, pp. 455–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. G. Forgan and M. E. Forster, “Oxygen consumption and blood flow distribution in perfused skeletal muscle of chinook salmon,” Journal of Comparative Physiology B, vol. 179, no. 3, pp. 359–368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Andrés and K. Walsh, “Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis,” Journal of Cell Biology, vol. 132, no. 4, pp. 657–666, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Shimokawa, M. Kato, O. Ezaki, and S. Hashimoto, “Transcriptional regulation of muscle-specific genes during myoblast differentiation,” Biochemical and Biophysical Research Communications, vol. 246, no. 1, pp. 287–292, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Lawson and P. P. Purslow, “Differentiation of myoblasts in serum-free media: effects of modified media are cell line-specific,” Cells Tissues Organs, vol. 167, no. 2-3, pp. 130–137, 2000. View at Scopus
  13. I. Delgado, X. Huang, S. Jones et al., “Dynamic gene expression during the onset of myoblast differentiation in vitro,” Genomics, vol. 82, no. 2, pp. 109–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Shen, J. M. Collier, M. Hlaing et al., “Genome-wide examination of myoblast cell cycle withdrawal during differentiation,” Developmental Dynamics, vol. 226, no. 1, pp. 128–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Burattini, R. Ferri, M. Battistelli, R. Curci, F. Luchetti, and E. Falcieri, “C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization,” European Journal of Histochemistry, vol. 48, no. 3, pp. 223–233, 2004. View at Scopus
  16. N. S. Tannu, V. K. Rao, R. M. Chaudhary et al., “Comparative proteomes of the proliferating C2C12 myoblasts and fully differentiated myotubes reveal the complexity of the skeletal muscle differentiation program,” Molecular and Cellular Proteomics, vol. 3, no. 11, pp. 1065–1082, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Veliça and C. M. Bunce, “A quick, simple and unbiased method to quantify C2C12 myogenic differentiation,” Muscle and Nerve, vol. 44, no. 3, pp. 366–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Zhang, S. Shi, J. Zhang, F. Zhou, and P. Ten Dijke, “Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression,” Biochemical and Biophysical Research Communications, vol. 419, no. 1, pp. 83–88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Okano and T. Matsuda, “Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues,” Cell Transplantation, vol. 7, no. 1, pp. 71–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. R. G. Dennis and P. E. Kosnik II, “Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro,” In Vitro Cellular and Developmental Biology, vol. 36, no. 5, pp. 327–335, 2000. View at Scopus
  21. R. G. Dennis, P. E. Kosnik II, M. E. Gilbert, and J. A. Faulkner, “Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines,” The American Journal of Physiology, vol. 280, no. 2, pp. C288–C295, 2001. View at Scopus
  22. R. Srikakulam and D. A. Winkelmann, “Chaperone-mediated folding and assembly of myosin in striated muscle,” Journal of Cell Science, vol. 117, no. 4, pp. 641–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Gawlitta, W. Li, C. W. J. Oomens, F. P. T. Baaijens, D. L. Bader, and C. V. C. Bouten, “The relative contributions of compression and hypoxia to development of muscle tissue damage: an in vitro study,” Annals of Biomedical Engineering, vol. 35, no. 2, pp. 273–284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. W.-Y. Lee, W.-Y. Cheng, Y.-C. Yeh et al., “Magnetically directed self-assembly of electrospun superparamagnetic fibrous bundles to form three-dimensional tissues with a highly ordered architecture,” Tissue Engineering C, vol. 17, no. 6, pp. 651–661, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. P. G. Arthur, J. J. Giles, and C. M. Wakeford, “Protein synthesis during oxygen conformance and severe hypoxia in the mouse muscle cell line C2C12,” Biochimica et Biophysica Acta, vol. 1475, no. 1, pp. 83–89, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Gawlitta, C. W. J. Oomens, D. L. Bader, F. P. T. Baaijens, and C. V. C. Bouten, “Temporal differences in the influence of ischemic factors and deformation on the metabolism of engineered skeletal muscle,” Journal of Applied Physiology, vol. 103, no. 2, pp. 464–473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. K. Heywood, D. L. Bader, and D. A. Lee, “Rate of oxygen consumption by isolated articular chondrocytes is sensitive to medium glucose concentration,” Journal of Cellular Physiology, vol. 206, no. 2, pp. 402–410, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. D. Guarino, L. E. Dike, T. A. Haq, J. A. Rowley, J. B. Pitner, and M. R. Timmins, “Method for determining oxygen consumption rates of static cultures from microplate measurements of pericellular dissolved oxygen concentration,” Biotechnology and Bioengineering, vol. 86, no. 7, pp. 775–787, 2004. View at Publisher · View at Google Scholar · View at Scopus