About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 329087, 6 pages
http://dx.doi.org/10.1155/2013/329087
Research Article

Enhanced EGFP Fluorescence Emission in Presence of PEG Aqueous Solutions and - - Copolymer Vesicles

1Department of Biotechnology (Biology VI), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
2Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
3Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
4Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
5Technische Universität Darmstadt, Center of Smart Interfaces, Petersenstraße 32, 64287 Darmstadt, Germany
6Konrad-Müller Straße 17, 52249 Eschweiler, Germany

Received 22 April 2013; Accepted 13 June 2013

Academic Editor: Jason Shearer

Copyright © 2013 Noor Muhammad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Kojima, H. Ohkawa, T. Hirano et al., “Fluorescent properties of model chromophores of tyrosine-66 substituted mutants of Aequorea green fluorescent protein (GFP),” Tetrahedron Letters, vol. 39, no. 29, pp. 5239–5242, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. C. W. Cody, D. C. Prasher, W. M. Westler, F. G. Prendergast, and W. W. Ward, “Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein,” Biochemistry, vol. 32, no. 5, pp. 1212–1218, 1993. View at Scopus
  3. O. Shimomura, “Structure of the chromophore of Aequorea green fluorescent protein,” FEBS Letters, vol. 104, no. 2, pp. 220–222, 1979. View at Scopus
  4. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science, vol. 263, no. 5148, pp. 802–805, 1994. View at Scopus
  5. M. V. Matz, A. F. Fradkov, Y. A. Labas et al., “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nature Biotechnology, vol. 17, no. 10, pp. 969–973, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Y. Tsien, “Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture),” Angewandte Chemie, vol. 48, no. 31, pp. 5612–5626, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Zhang, V. Gurtu, and S. R. Kain, “An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells,” Biochemical and Biophysical Research Communications, vol. 227, no. 3, pp. 707–711, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. B. P. Cormack, R. H. Valdivia, and S. Falkow, “FACS-optimized mutants of the green fluorescent protein (GFP),” Gene, vol. 173, no. 1, pp. 33–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Chen, J. D. Müller, Q. Ruan, and E. Gratton, “Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy,” Biophysical Journal, vol. 82, no. 1, pp. 133–144, 2002. View at Scopus
  10. M. Noor, T. Dworeck, A. Schenk, P. Shinde, M. Fioroni, and U. Schwaneberg, “Polymersome surface decoration by an EGFP fusion protein employing Cecropin A as peptide “anchor”,” Journal of Biotechnology, vol. 157, no. 1, pp. 31–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. O. V. Stepanenko, V. V. Verkhusha, V. I. Kazakov et al., “Comparative studies on the structure and stability of fluorescent proteins EGFP, zFP506, mRFP1, “dimer2”, and DsRed1,” Biochemistry, vol. 43, no. 47, pp. 14913–14923, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Fischer, D. Paschek, A. Geiger, and G. Sadowski, “Modeling of aqueous poly(oxyethylene) solutions: 1. Atomistic simulations,” Journal of Physical Chemistry B, vol. 112, no. 8, pp. 2388–2398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Weber, H. Volkard, A. McCammon, and P. W. L. Anghoff, “Shedding light on the dark and weakly fluorescent states of green fluorescent proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, pp. 6177–6182, 1999.
  15. B. Hess, C. Kutzner, D. Van Der Spoel, and E. Lindahl, “GRGMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation,” Journal of Chemical Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, Intermolecular Forces, Reidel, Dordrecht, The Netherlands, 1981.
  17. G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity rescaling,” Journal of Chemical Physics, vol. 126, no. 1, Article ID 014101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. Dinola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684–3690, 1984. View at Scopus
  19. C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, “A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1656–1676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, “LINCS: a linear constraint solver for molecular simulations,” Journal of Computational Chemistry, vol. 18, no. 12, pp. 1463–1472, 1997. View at Scopus
  21. T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems,” The Journal of Chemical Physics, vol. 98, no. 12, pp. 10089–10092, 1993. View at Scopus
  22. K. Suhling, J. Siegel, D. Phillips et al., “Imaging the environment of green fluorescent protein,” Biophysical Journal, vol. 83, no. 6, pp. 3589–3595, 2002. View at Scopus
  23. Y. Fu, J. Zhang, and J. R. Lakowicz, “Metal-enhanced fluorescence of single green fluorescent protein (GFP),” Biochemical and Biophysical Research Communications, vol. 376, no. 4, pp. 712–717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Hisatomi, D. Katagiri, S. Neya, M. Hara, and T. Hoshino, “Analysis of the unfolding process of green fluorescent protein by molecular dynamics simulation,” Journal of Physical Chemistry B, vol. 112, no. 29, pp. 8672–8680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Nifosì and V. Tozzini, “Molecular dynamics simulations of enhanced green fluorescent proteins: effects of F64L, S65T and T203Y mutations on the ground-state proton equilibria,” Proteins, vol. 51, no. 3, pp. 378–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Follenius-Wund, M. Bourotte, M. Schmitt et al., “Fluorescent derivatives of the GFP chromophore give a new insight into the GFP fluorescence process,” Biophysical Journal, vol. 85, no. 3, pp. 1839–1850, 2003. View at Scopus
  27. W. Kabsch and C. Sander, “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features,” Biopolymers, vol. 22, no. 12, pp. 2577–2637, 1983. View at Scopus
  28. D. Roccatano, G. Colombo, M. Fioroni, and A. E. Mark, “Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12179–12184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. L. C. de Lencastre Novaes, P. G. Mazzola, A. Pessoa Jr., and T. C. Vessoni Penna, “Effect of polyethylene glycol on the thermal stability of green fluorescent protein,” Biotechnology Progress, vol. 26, no. 1, pp. 252–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” Journal of Fluorescence, vol. 13, no. 3, pp. 201–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. J. Strickler and R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” The Journal of Chemical Physics, vol. 37, no. 4, pp. 814–822, 1962. View at Scopus