About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 329121, 18 pages
http://dx.doi.org/10.1155/2013/329121
Review Article

A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond

1Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata Nadia, Mohanpur, West Bengal 741252, India
2Institute of Life Sciences, Bhubaneswar 751023, India

Received 3 May 2013; Revised 7 July 2013; Accepted 9 July 2013

Academic Editor: Subash C. B. Gopinath

Copyright © 2013 Neelam Gurung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Kühne, “Über das Verhalten verschiedener organisirter und sog. Ungeformter Fermente,” Verhandlungen des Heidelb. Naturhist.-Med. Vereins, Neue Folge, vol. 1, no. 3, pp. 190–193, 1877.
  2. R. Vallery and R. L. Devonshire, Life of Pasteur, 2003.
  3. I. Asimov, Asimov's Biographical Encyclopedia of Science and Technology, 2nd edition, 1982.
  4. A. Payen and J. F. Persoz, “Memoir on diastase, the principal products of its reactions, and their applications to the industrial arts,” Annales de Chimie et de Physique, vol. 53, pp. 73–92, 1833.
  5. A. Ullmann, “Pasteur-Koch: distinctive ways of thinking about infectious diseases,” Microbe, vol. 2, no. 8, pp. 383–387, 2007. View at Scopus
  6. J. L. Wang and P. Liu, “Comparison of citric acid production by Aspergillus niger immobilized in gels and cryogels of polyacrylamide,” Journal of Industrial Microbiology, vol. 16, no. 6, pp. 351–353, 1996. View at Scopus
  7. T. P. Bennett and E. Frieden, Modern Topics in Biochemistry, Macmillan, 1969.
  8. Nobel prize for Chemistry laureates, 1946, http://www.nobelprize.org/.
  9. L. A. Underkofler, R. R. Barton, and S. S. Rennert, “Production of microbial enzymes and their applgications,” Applied Microbiology, vol. 6, no. 3, pp. 212–221, 1957.
  10. A. L. Smith, Oxford Dictionary of Biochemistry and Molecular Biology, Oxford University Press, 1997.
  11. A. Bairoch, “The ENZYME database in 2000,” Nucleic Acids Research, vol. 28, no. 1, pp. 304–305, 2000.
  12. E. Fischer, “Einfluss der configuration auf die wirkung der enzyme,” Berichte der Deutschen Chemischen Gesellschaft, vol. 27, no. 3, pp. 2985–2993, 1894. View at Publisher · View at Google Scholar
  13. The Catalytic Site Atlast at The European Bioinformatics Institute, 2007.
  14. E. C. Webb, “Enzyme nomenclature 1992: reccomemdations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes,” Academic Press, 1992.
  15. G. S. Sidhu, P. Sharma, T. Chakrabarti, and J. K. Gupta, “Strain improvement for the production of a thermostable α-amylase,” Enzyme and Microbial Technology, vol. 21, no. 7, pp. 525–530, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. M. B. Rao, A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande, “Molecular and biotechnological aspects of microbial proteases,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 597–635, 1998. View at Scopus
  17. L.-L. Lin, W.-H. Hsu, and W.-S. Chu, “A gene encoding for an α-amylase from thermophilic Bacillus sp. Strain TS-23 and its expression in Escherichia coli,” Journal of Applied Microbiology, vol. 82, no. 3, pp. 325–334, 1997. View at Scopus
  18. A. Pandey, C. R. Soccol, and D. Mitchell, “New developments in solid state fermentation: I-bioprocesses and products,” Process Biochemistry, vol. 35, no. 10, pp. 1153–1169, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Gupta, P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan, “Microbial α-amylases: a biotechnological perspective,” Process Biochemistry, vol. 38, no. 11, pp. 1599–1616, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Kandra, “α-Amylases of medical and industrial importance,” Journal of Molecular Structure, vol. 666-667, pp. 487–498, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Voet and J. G. Voet, Biochimie, De Boeck, Bruxelles, Belgium, 2005.
  22. N. Ramasubbu, V. Paloth, Y. Luo, G. D. Brayer, and M. J. Levine, “Structure of human salivary α-amylase at 1.6 Å resolution: implications for its role in the oral cavity,” Acta Crystallographica Section D, vol. 52, no. 3, pp. 435–446, 1996. View at Scopus
  23. M. Rejzek, C. E. Stevenson, A. M. Southard et al., “Chemical genetics and cereal starch metabolism: structural basis of the non-covalent and covalent inhibition of barley β-amylase,” Molecular BioSystems, vol. 7, no. 3, pp. 718–730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. http://www.med.kagawa-u.ac.jp/~xraylab/research/structure_table_e.html.
  25. Z. Konsoula and M. Liakopoulou-Kyriakides, “Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates,” Bioresource Technology, vol. 98, no. 1, pp. 150–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Pandey, P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan, “Advances in microbial amylases,” Biotechnology and Applied Biochemistry, vol. 31, no. 2, pp. 135–152, 2000. View at Scopus
  27. M. Asgher, M. J. Asad, S. U. Rahman, and R. L. Legge, “A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing,” Journal of Food Engineering, vol. 79, no. 3, pp. 950–955, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Gomes, J. Gomes, and W. Steiner, “Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization,” Bioresource Technology, vol. 90, no. 2, pp. 207–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Prakash, M. Vidyasagar, M. S. Madhukumar, G. Muralikrishna, and K. Sreeramulu, “Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101,” Process Biochemistry, vol. 44, no. 2, pp. 210–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. B. R. Mohapatra, U. C. Banerjee, and M. Bapuji, “Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp,” Journal of Biotechnology, vol. 60, no. 1-2, pp. 113–117, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. M. A. Amoozegar, F. Malekzadeh, and K. A. Malik, “Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2,” Journal of Microbiological Methods, vol. 52, no. 3, pp. 353–359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. G. W. Hutcheon, N. Vasisht, and A. Bolhuis, “Characterisation of a highly stable α-amylase from the halophilic archaeon Haloarcula hispanica,” Extremophiles, vol. 9, no. 6, pp. 487–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M.-J. Coronado, C. Vargas, J. Hofemeister, A. Ventosa, and J. J. Nieto, “Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana,” FEMS Microbiology Letters, vol. 183, no. 1, pp. 67–71, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. C. E. Deutch, “Characterization of a salt-tolerant extracellular α-amylase from Bacillus dipsosauri,” Letters in Applied Microbiology, vol. 35, no. 1, pp. 78–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Kathiresan and S. Manivannan, “α-Amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil,” African Journal of Biotechnology, vol. 5, no. 10, pp. 829–832, 2006. View at Scopus
  36. B. Jin, H. J. Van Leeuwen, B. Patel, and Q. Yu, “Utilisation of starch processing wastewater for production of microbial biomass protein and fungal α-amylase by Aspergillus oryzae,” Bioresource Technology, vol. 66, no. 3, pp. 201–206, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Djekrif-Dakhmouche, Z. Gheribi-Aoulmi, Z. Meraihi, and L. Bennamoun, “Application of a statistical design to the optimization of culture medium for α-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder,” Journal of Food Engineering, vol. 73, no. 2, pp. 190–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Jensen, P. Nebelong, J. Olsen, and M. Reeslev, “Enzyme production in continuous cultivation by the thermophilic fungus, Thermomyces lanuginosus,” Biotechnology Letters, vol. 24, no. 1, pp. 41–45, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Kunamneni, K. Permaul, and S. Singh, “Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus,” Journal of Bioscience and Bioengineering, vol. 100, no. 2, pp. 168–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. J. E. Nielsen and T. V. Borchert, “Protein engineering of bacterial α-amylases,” Biochimica et Biophysica Acta, vol. 1543, no. 2, pp. 253–274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Mitidieri, A. H. Souza Martinelli, A. Schrank, and M. H. Vainstein, “Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations,” Bioresource Technology, vol. 97, no. 10, pp. 1217–1224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. J. E. C. Van Der Maarel, B. Van Der Veen, J. C. M. Uitdehaag, H. Leemhuis, and L. Dijkhuizen, “Properties and applications of starch-converting enzymes of the α-amylase family,” Journal of Biotechnology, vol. 94, no. 2, pp. 137–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Ahlawat, S. S. Dhiman, B. Battan, R. P. Mandhan, and J. Sharma, “Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric,” Process Biochemistry, vol. 44, no. 5, pp. 521–526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Das, S. Singh, V. Sharma, and M. L. Soni, “Biotechnological applications of industrially important amylase enzyme,” International Journal of Pharma and Bio Sciences, vol. 2, no. 1, pp. 486–496, 2011. View at Scopus
  45. A. Svendsen, “Lipase protein engineering,” Biochim Biophys Acta, vol. 1543, no. 2, pp. 223–228, 2000.
  46. A. Girod, C. E. Wobus, Z. Zádori et al., “The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity,” Journal of General Virology, vol. 83, no. 5, pp. 973–978, 2002. View at Scopus
  47. B. Hube, F. Stehr, M. Bossenz, A. Mazur, M. Kretschmar, and W. Schäfer, “Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members,” Archives of Microbiology, vol. 174, no. 5, pp. 362–374, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Withers-Martinez, F. Carrière, R. Verger, D. Bourgeois, and C. Cambillau, “A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig,” Structure, vol. 4, no. 11, pp. 1363–1374, 1996. View at Scopus
  49. M. Vellard, “The enzyme as drug: application of enzymes as pharmaceuticals,” Current Opinion in Biotechnology, vol. 14, no. 4, pp. 444–450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. E. J. Cupler, K. I. Berger, R. T. Leshner et al., “Consensus treatment recommendations for late-onset pompe disease,” Muscle and Nerve, vol. 45, no. 3, pp. 319–333, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Morgunova, S. Saller, I. Haase et al., “Lumazine synthase from Candida albicans as an anti-fungal target enzyme: structural and biochemical basis for drug design,” Journal of Biological Chemistry, vol. 282, no. 23, pp. 17231–17241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Grandgirard, J. M. Loeffler, V. A. Fischetti, and S. L. Leib, “Phage lytic enzyme Cpl-1 for antibacterial therapy in experimental pneumococcal meningitis,” Journal of Infectious Diseases, vol. 197, no. 11, pp. 1519–1522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. L. W. Tjoelker, C. Eberhardt, J. Unger et al., “Plasma platelet-activating factor acetylhydrolase is a secreted phospholipase A2 with a catalytic triad,” Journal of Biological Chemistry, vol. 270, no. 43, pp. 25481–25487, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Spiegel, D. Foster, and R. Kolesnick, “Signal transduction through lipid second messengers,” Current Opinion in Cell Biology, vol. 8, no. 2, pp. 159–167, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. Guo and X. Xu, “New opportunity for enzymatic modification of fats and oils with industrial potentials,” Organic & Biomolecular Chemistry, vol. 3, no. 14, pp. 2615–2619, 2005.
  56. R. Gupta, N. Gupta, and P. Rathi, “Bacterial lipases: an overview of production, purification and biochemical properties,” Applied Microbiology and Biotechnology, vol. 64, no. 6, pp. 763–781, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. A. A. Palekar, P. T. Vasudevan, and S. Yan, “Purification of lipase: a review,” Biocatalysis and Biotransformation, vol. 18, no. 3, pp. 177–200, 2000. View at Scopus
  58. A. Pandey, S. Benjamin, C. R. Soccol, P. Nigam, N. Krieger, and V. T. Soccol, “The realm of microbial lipases in biotechnology,” Biotechnology and Applied Biochemistry, vol. 29, no. 2, pp. 119–131, 1999. View at Scopus
  59. F. Beisson, A. Tiss, C. Rivière, and R. Verger, “Methods for lipase detection and assay: a critical review,” European Journal of Lipid Science and Technology, vol. 102, no. 2, pp. 133–153, 2000. View at Scopus
  60. R. Sharma, Y. Chisti, and U. C. Banerjee, “Production, purification, characterization, and applications of lipases,” Biotechnology Advances, vol. 19, no. 8, pp. 627–662, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. W. H. Ko, I. T. Wang, and P. J. Ann, “A simple method for detection of lipolytic microorganisms in soils,” Soil Biology and Biochemistry, vol. 37, no. 3, pp. 597–599, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Maheshwari, G. Bharadwaj, and M. K. Bhat, “Thermophilic fungi: their physiology and enzymes,” Microbiology and Molecular Biology Reviews, vol. 64, no. 3, pp. 461–488, 2000. View at Scopus
  63. K. E. Jaeger, S. Ransak, B. W. Djkstra, C. C. van Henrel, and O. Misset, “Bacterial lipases,” FEMS Microbiology Reviews, vol. 15, pp. 29–63, 1994.
  64. S. Minning, C. Schmidt-Dannert, and R. D. Schmid, “Functional expression of Rhizopus oryzae lipase in Pichia pastoris: high-level production and some properties,” Journal of Biotechnology, vol. 66, no. 2-3, pp. 147–156, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Aloulou, J. A. Rodriguez, D. Puccinelli, et al., “Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica,” Biochimica et Biophysica Acta, vol. 1771, pp. 228–237, 2007.
  66. A. Larios, H. S. García, R. M. Ollart, and G. Valerio-Alfaro, “Synthesis of flavor and fragrance esters using Candida antarctica lipase,” Applied Microbiology and Biotechnology, vol. 65, no. 4, pp. 373–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. L. M. Pera, C. M. Romero, M. D. Baigori, and G. R. Castro, “Catalytic properties of lipase extracts from Aspergillus niger,” Food Technology and Biotechnology, vol. 44, no. 2, pp. 247–252, 2006. View at Scopus
  68. B. Sarrouh, T. M. Santos, A. Miyoshi, R. Dia, and V. Azevedo, “Up-To-Date insight on industrial enzymes applications and global market,” Journal of Bioprocessing & Biotechniques, 2012.
  69. K. senthil Raja, N. S. Vasanthi, D. Saravanan, and T. Ramachandran, “Use of bacterial lipase for scouring of cotton fabrics,” Indian Journal of Fiber & Textile Research, vol. 37, pp. 299–302, 2012.
  70. Applications of Lipases. AU-KBC Research Center, Life Sciences, Anna University, Chennai, India, http://www.au-kbc.org/beta/bioproj2/introduction.html.
  71. E. W. Seitz, “Industrial application of microbial lipases: a review,” Journal of the American Oil Chemists' Society, vol. 51, no. 2, pp. 12–16, 1974. View at Publisher · View at Google Scholar · View at Scopus
  72. J. A. Lott and C. J. Lu, “Lipase isoforms and amylase isoenzymes: assays and application in the diagnosis of acute pancreatitis,” Clinical Chemistry, vol. 37, no. 3, pp. 361–368, 1991. View at Scopus
  73. Proceedings of the Annual ACVIM Forum, Charlotte, NC, USA, 2003, http://www.vetmed.wsu.edu/coursesvm546/contentlinks/ClinicalPathology/LabTests/PLI.htm.
  74. V. Majtán, A. Hoštacká, L. Majtánová, and J. Trupl, “Toxinogenicity and markers of pathogenicity of Pseudomonas aeruginosa strains isolated from patients with tumor diseases,” Folia Microbiologica, vol. 47, no. 4, pp. 445–449, 2002. View at Scopus
  75. G. A. Annenkov, N. N. Klepikov, L. P. Martynova, and V. A. Puzanov, “Wide range of the use of natural lipases and esterases to inhibit Mycobacterium tuberculosis,” Problemy Tuberkuleza i Bolezneĭ Legkikh, no. 6, pp. 52–56, 2004. View at Scopus
  76. H. Matsumae, M. Furui, and T. Shibatani, “Lipase-catalyzed asymmetric hydrolysis of 3-phenylglycidic acid ester, the key intermediate in the synthesis of diltiazem hydrochloride,” Journal of Fermentation and Bioengineering, vol. 75, no. 2, pp. 93–98, 1993. View at Publisher · View at Google Scholar · View at Scopus
  77. C. V. Smythe, “Microbiological production of enzymes and their industrial applications,” Economic Botany, vol. 5, no. 2, pp. 126–144, 1951. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Imamura, M. Takahashi, H. Misaki, and K. Matsuura, “Method and reagent containing lipases for enzymatic determination of triglycerides,” West Germany Patent 3.912.226, 1989.
  79. R. Margesin, A. Zimmerbauer, and F. Schinner, “Soil lipase activity—a useful indicator of oil biodegradation,” Biotechnology Techniques, vol. 13, no. 12, pp. 859–863, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. M. P. Prasad and K. Manjunath, “Comparative study on biodegradation of lipid-rich wastewater using lipase producing bacterial species,” Indian Journal of Biotechnology, vol. 10, no. 1, pp. 121–124, 2011. View at Scopus
  81. A. A. Amro and S. R. Soheir, “Degration of castor oil and lipase production by Pseudomonas aeruginosa,” Journal of Agricultural & Environmental Sciences, vol. 5, no. 4, pp. 556–563, 2009.
  82. S. Watanabe, K. Miyake, C. Ogawa et al., “The ex vivo production of ammonia predicts l-asparaginase biological activity in children with acute lymphoblastic leukemia,” International Journal of Hematology, vol. 90, no. 3, pp. 347–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Jain, K. U. Zaidi, Y. Verma, and P. Saxena, “L-Asparaginase: a promising enzyme for treatment of acute lymphoblastic leukiemia,” People’s Journal of Scientific Research, vol. 5, no. 1, pp. 29–35, 2012.
  84. K. Dolynchuk, D. Keast, K. Campbell et al., “Best practices for the prevention and treatment of pressure ulcers,” Ostomy/Wound Management, vol. 46, no. 11, pp. 38–53, 2000. View at Scopus
  85. A. S. D. Spiers and H. E. Wade, “Bacterial glutaminase in treatment of acute leukaemia,” British Medical Journal, vol. 1, no. 6021, pp. 1317–1319, 1976. View at Scopus
  86. P. Sonneveld, J. S. Holcenberg, and D. W. van Bekkum, “Effect of succinylated Acinetobacter glutamine-asparaginase treatment on an acute myeloid leukemia in the rat (BNML),” European Journal of Cancer and Clinical Oncology, vol. 15, no. 8, pp. 1061–1063, 1979. View at Scopus
  87. K. D. May, J. E. Wells, C. V. Maxwell, and W. T. Oliver, “Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs,” Journal of Animal Science, vol. 90, no. 4, pp. 1118–1125, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Subramanian, B. S. Sheshadri, and M. P. Venkatappa, “Interactions of lysozyme with antibiotics—binding of penicillins to lysozyme,” Journal of Biosciences, vol. 5, no. 4, pp. 331–338, 1983. View at Scopus
  89. S. V. Scherbik, J. M. Paranjape, B. M. Stockman, R. H. Silverman, and M. A. Brinton, “RNase L plays a role in the antiviral response to West Nile virus,” Journal of Virology, vol. 80, no. 6, pp. 2987–2999, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. R. J. Lin, H. L. Chien, S. Y. Lin et al., “MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation,” Nucleic Acids Research, 2013.
  91. A. Banerjee, Y. Chisti, and U. C. Banerjee, “Streptokinase—a clinically useful thrombolytic agent,” Biotechnology Advances, vol. 22, no. 4, pp. 287–307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Brien, G. Lewith, A. Walker, S. M. Hicks, and D. Middleton, “Bromelain as a treatment for osteoarthritis: a review of clinical studies,” Evidence-Based Complementary and Alternative Medicine, vol. 1, no. 3, pp. 251–257, 2004.
  93. M. R. Sherman, M. G. P. Saifer, and F. Perez-Ruiz, “PEG-uricase in the management of treatment-resistant gout and hyperuricemia,” Advanced Drug Delivery Reviews, vol. 60, no. 1, pp. 59–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Terkeltaub, “Gout. Novel therapies for treatment of gout and hyperuricemia,” Arthritis Research & Therapy, vol. 11, no. 4, p. 236, 2009. View at Scopus
  95. S. Zaitsev, D. Spitzer, J.-C. Murciano et al., “Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation,” Blood, vol. 115, no. 25, pp. 5241–5248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. W. Rakusin, “Urokinase in the management of traumatic hyphaema,” British Journal of Ophthalmology, vol. 55, no. 12, pp. 826–832, 1971. View at Scopus
  97. V. Gupta, K. Kumarasamy, N. Gulati, R. Ritu Garg, P. Krishnan, and J. Chander, “AmpC β-lactamases in nosocomial isolates of Klebsiella pneumonia from India,” Indian Journal of Medical Research, vol. 136, pp. 237–241, 2012.
  98. R. C. Erickson and R. E. Bennett, “Penicillin acylase activity of Penicillium chrysogenum,” Applied Microbiology, vol. 13, no. 5, pp. 738–742, 1965. View at Scopus
  99. E. J. Bradbury, L. D. F. Moon, R. J. Popat et al., “Chondroitinase ABC promotes functional recovery after spinal cord injury,” Nature, vol. 416, no. 6881, pp. 636–640, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. L. D. F. Moon, R. A. Asher, and J. W. Fawcett, “Limited growth of severed CNS axons after treatment of adult rat brain with hyaluronidase,” Journal of Neuroscience Research, vol. 71, no. 1, pp. 23–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Lee-Huang, P. L. Huang, Y. Sun et al., “Lysozyme and RNases as anti-HIV components in β-core preparations of human chorionic gonadotropin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 2678–2681, 1999. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Fusetti, H. Von Moeller, D. Houston et al., “Structure of human chitotriosidase: implications for specific inhibitor design and function of mammalian chitinase-like lectins,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25537–25544, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Zimmer, N. Vukov, S. Scherer, and M. J. Loessner, “The murein hydrolase of the bacteriophage φ3626 dual lysis system is active against all tested Clostridium perfringens strains,” Applied and Environmental Microbiology, vol. 68, no. 11, pp. 5311–5317, 2002. View at Scopus
  104. C. M. Ensor, F. W. Holtsberg, J. S. Bomalaski, and M. A. Clark, “Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo,” Cancer Research, vol. 62, no. 19, pp. 5443–5450, 2002. View at Scopus
  105. F. Blain, A. L. Tkalec, Z. Shao et al., “Expression system for high levels of GAG lyase gene expression and study of the hepA upstream region in Flavobacterium heparinum,” Journal of Bacteriology, vol. 184, no. 12, pp. 3242–3252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  106. Genencor International website, http://www.genencor.com/wt/gcor/adv_therapeutics.
  107. A. L. Demain, “Overproduction of microbial metabolites and enzymes due to alteration of regulation,” Advances in Biochemical Engineering, vol. 1, pp. 113–142, 1971.
  108. N. Akhter, M. A. Morshed, A. Uddin, F. Begum, and T. Sultan, “Production of pectinase by Aspergillus niger cultured in solid state media,” International Journal of Biosciences, vol. 1, no. 1, pp. 33–42, 2011.
  109. A. Khan, S. Sahay, and N. Rai, “Production and optimization of Pectinase enzyme using Aspergillus niger strains in Solid State fermentation,” Research in Biotechnology, vol. 3, no. 3, pp. 19–25, 2007.
  110. S. Sabir, H. N. Bhatti, M. A. Zia, and M. A. Sheikh, “Enhanced production of glucose oxidase using Penicillium notatum and rice polish,” Food Technology and Biotechnology, vol. 45, no. 4, pp. 443–446, 2007. View at Scopus
  111. M. Padmapriya and B. C. Williams, “Purification and characterization of neutral protease enzyme from Bacillus subtilis,” Journal of Microbiology and Biotechnology Research, vol. 2, no. 4, pp. 612–618.
  112. S. B. Oyeleke, O. A. Oyewole, and E. C. Egwim, “Production of protease and amylase from Bacillus subtilis and Aspergillus niger using Parkia biglobossa (Africa Locust Beans) as substrate in solid state fermentation,” Advances in Life Sciences, vol. 1, no. 2, pp. 49–53, 2011.
  113. A. Gram, W. Treffenfeldt, U. Lange, T. McIntyre, and O. Wolf, The Application of Biotechnology to Industrial Sustainability, OECD Publications Service, Paris, France, 2001.
  114. P. H. Raven, “Presidential address: science, sustainability, and the human prospect,” Science, vol. 297, no. 5583, pp. 954–958, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. W. C. Clark and N. M. Dickson, “Sustainable science: the emerging research programm,” Proceedings of the National Academy of Sciences of the Unites States of America, vol. 100, pp. 8059–8061, 2003.
  116. http://www.innovadex.com/Food/Detail/4980/188095/GLUCANASE-5XL.
  117. http://prof.dr.semih.otles.tripod.com/enzymesused/beverages1.htm.
  118. http://www.gmo-compass.org/eng/database/enzymes/85.glucanase.html.
  119. http://spmbiology403.blogspot.in/2008/08/uses-of-enzyme.html.
  120. http://distillery-yeast.com/data-sheets/amyloglucosidase.
  121. http://www.gmo-compass.org/eng/database/enzymes/95.pullulanase.html.
  122. http://www.21food.com/products/alpha-acetolactate-decarboxylase(aldc)-for-brewing-industry-145681.html.
  123. A. Brune and M. Ohkuma, “Role of the termite gut macrobiota in symbiotic digestion,” in Biology of Termites: A Modern Synthesis, D. E. Bignell, Ed., ch 16, 2010.
  124. http://pec.biodbs.info/Applications.html.
  125. P. G. Noone, Z. Zhou, L. M. Silverman, P. S. Jowell, M. R. Knowles, and J. A. Cohn, “Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations,” Gastroenterology, vol. 121, no. 6, pp. 1310–1319, 2001. View at Scopus
  126. H. Guzmán-Maldonado and O. Paredes-López, “Amylolytic enzymes and products derived from starch: a review,” Critical Reviews in Food Science and Nutrition, vol. 35, no. 5, pp. 373–403, 1995.
  127. http://prof.dr.semih.otles.tripod.com/enzymesused/ensymes/food_industry_with_protease.htm.
  128. http://www.papainenzyme.com/hydrolyzing-enzymes-1331680.html.
  129. J. Aikawa, M. Nishiyama, and T. Beppu, “Protein engineering of the milk-clotting aspartic proteinases,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 210, pp. 51–58, 1992.
  130. http://www.scielo.cl/fbpe/img/ejb/v9n1/a10/bip/.
  131. L. M. Tarantino, “Agency Response Letter GRAS Notice No. GRN 000132,” U.S. Food and Drug Administration, 2003.
  132. http://www.scienceinthebox.com/enzymes-in-laundry-detergents.
  133. http://www.mapsenzymes.com/Enzymes_Textile.asp.
  134. http://www.iisc.ernet.in/currsci/jul10/articles21.htm.
  135. J. Frias, R. Doblado, J. R. Antezana, and C. Vidal-Valverde, “Inositol phosphate degradation by the action of phytase enzyme in legume seeds,” Food Chemistry, vol. 81, no. 2, pp. 233–239, 2003.
  136. P. S. Suresh, A. Kumar, R. Kumar, and V. P. Singh, “An in silico approach to bioremediation: laccase as a case study,” Journal of Molecular Graphics and Modelling, vol. 26, no. 5, pp. 845–849, 2008.
  137. H. M. Baganz, S. C. Carfagno, B. Y. Cowan, and E. S. Dillon, “NPH insulin; its comparison with previous insulin regimens,” The American Journal of the Medical Sciences, vol. 222, no. 1, pp. 1–6, 1951. View at Scopus
  138. Enzymes at work—a brochure, http://www.novozymes.com/en/Pages/default.aspx.
  139. R. J. Roberts, T. Vincze, J. Posfai, and D. Macelis, “REBASE—enzymes and genes for DNA restriction and modification,” Nucleic Acids Research, vol. 35, no. 1, pp. D269–D270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. “Designer enzyme,” http://www.medicalnewstoday.com/articles/101236.php.
  141. L. L. Looger, M. A. Dwyer, J. J. Smith, and H. W. Hellinga, “Computational design of receptor and sensor proteins with novel functions,” Nature, vol. 423, no. 6936, pp. 185–190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  142. Phenylketonuria: NCBI Genes and Disease, 2007.
  143. J. William, B. Timothy, and E. Dirk, Andrews' Diseases of the Skin: Clinical Dermatology, Saunders, 10th edition, 2005.
  144. G. Fuhrmann and J.-C. Leroux, “In vivo fluorescence imaging of exogenous enzyme activity in the gastrointestinal tract,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 9032–9037, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. H. H. Jones, “American Conference of Governmental Industrial Hygienists' proposed threshold limit value for noise,” American Industrial Hygiene Association journal, vol. 29, no. 6, pp. 537–540, 1968. View at Scopus
  146. AISE, Association Internationale de la Savonnerie, de la Détergence et des Produits d'Entretien, Guidelines for the Safe Handling of Enzymes in Detergent Manufacturing, 2002.
  147. PB 204 118. Report of the ad hoc Committee on Enzyme Detergents. Division of medical Science. National Academy of Science—National Research Council. Enzyme Containing Laundering Compounds and Consumer Health. Supported by the Food and Drug Administration, November 1971.
  148. HERA—Risk Assessment, http://www.heraproject.com/.
  149. C. Bindslev-Jensen, P. S. Skov, E. L. Roggen, P. Hvass, and D. S. Brinch, “Investigation on possible allergenicity of 19 different commercial enzymes used in the food industry,” Food and Chemical Toxicology, vol. 44, no. 11, pp. 1909–1915, 2006. View at Publisher · View at Google Scholar · View at Scopus