About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 347618, 10 pages
http://dx.doi.org/10.1155/2013/347618
Research Article

Mass Production of Early-Stage Bone-Marrow-Derived Mesenchymal Stem Cells of Rat Using Gelatin-Coated Matrix

1Stem Cell and Bioevaluation, WCU Biomodulation Program, Seoul National University, Seoul 151-921, Republic of Korea
2Department of Agricultural Biotechnology, College of Agricultural Life and Science, Seoul National University, Seoul 151-921, Republic of Korea
3Department of Animal Biotechnology, College of Animal Life Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
4Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
5Department of Neurosurgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
6College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Republic of Korea

Received 7 May 2013; Revised 4 August 2013; Accepted 30 August 2013

Academic Editor: Chiu-Chung Young

Copyright © 2013 Young Hyun Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Although preparation of early-stage bone-marrow-derived mesenchymal stem cells (BM-MSCs) is critical for successful cell transplantation therapy, no culture system offers a sufficient number of early-stage BM-MSCs for cell transplantation. Accordingly, we developed a culture system capable of producing a large number of early-stage BM-MSCs by using gelatin-coated matrix. The greatest retrieval and proliferation rates of the earliest-stage rat BM-MSCs were detected in bone-marrow-derived cells cultured on 1% (wt/v) gelatin-coated matrix, which showed significantly greater colony forming unit-fibroblast number, diameter, and total cell number. Moreover, continuous culture of the earliest-stage BM-MSCs on 1% (wt/v) gelatin-coated matrix resulted in a maximum of fold increase in the cumulative total number of early-stage BM-MSCs at passage 5. BM-MSCs generated in large quantities due to a reduced doubling time and an increased yield of cell population in S/G2/M phase showed typical fibroblast-like morphology and no significant differences in BM-MSC-related surface marker expression and differentiation potential, except for an increased ratio of differentiation into a neurogenic lineage. The use of gelatin-coated matrix in the retrieval and culture of BM-MSCs contributes greatly to the effective isolation and mass production of early-stage BM-MSCs.