About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 347618, 10 pages
http://dx.doi.org/10.1155/2013/347618
Research Article

Mass Production of Early-Stage Bone-Marrow-Derived Mesenchymal Stem Cells of Rat Using Gelatin-Coated Matrix

1Stem Cell and Bioevaluation, WCU Biomodulation Program, Seoul National University, Seoul 151-921, Republic of Korea
2Department of Agricultural Biotechnology, College of Agricultural Life and Science, Seoul National University, Seoul 151-921, Republic of Korea
3Department of Animal Biotechnology, College of Animal Life Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
4Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
5Department of Neurosurgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
6College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Republic of Korea

Received 7 May 2013; Revised 4 August 2013; Accepted 30 August 2013

Academic Editor: Chiu-Chung Young

Copyright © 2013 Young Hyun Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Friedenstein, “Precursor cells of mechanocytes,” International Review of Cytology, vol. 47, pp. 327–359, 1976. View at Scopus
  2. A. Peister, J. A. Mellad, B. L. Larson, B. M. Hall, L. F. Gibson, and D. J. Prockop, “Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential,” Blood, vol. 103, no. 5, pp. 1662–1668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Abdi, P. Fiorina, C. N. Adra, M. Atkinson, and M. H. Sayegh, “Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes,” Diabetes, vol. 57, no. 7, pp. 1759–1767, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. J. Nauta and W. E. Fibbe, “Immunomodulatory properties of mesenchymal stromal cells,” Blood, vol. 110, no. 10, pp. 3499–3506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Parekkadan and J. M. Milwid, “Mesenchymal stem cells as therapeutics,” Annual Review of Biomedical Engineering, vol. 12, pp. 87–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. M. Bonab, K. Alimoghaddam, F. Talebian, S. H. Ghaffari, A. Ghavamzadeh, and B. Nikbin, “Aging of mesenchymal stem cell in vitro,” BMC Cell Biology, vol. 7, article 14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Wagner, P. Horn, M. Castoldi et al., “Replicative senescence of mesenchymal stem cells: a continuous and organized process,” PLoS ONE, vol. 3, no. 5, Article ID e2213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Banfi, A. Muraglia, B. Dozin, M. Mastrogiacomo, R. Cancedda, and R. Quarto, “Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy,” Experimental Hematology, vol. 28, no. 6, pp. 707–715, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. A. J. Friedenstein, U. F. Gorskaja, and N. N. Kulagina, “Fibroblast precursors in normal and irradiated mouse hematopoietic organs,” Experimental Hematology, vol. 4, no. 5, pp. 267–274, 1976. View at Scopus
  11. R. Binato, T. de Souza Fernandez, C. Lazzarotto-Silva et al., “Stability of human mesenchymal stem cells during in vitro culture: considerations for cell therapy,” Cell Proliferation, vol. 46, no. 1, pp. 10–22, 2013. View at Publisher · View at Google Scholar
  12. M. Hou, K. M. Yang, H. Zhang et al., “Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats,” International Journal of Cardiology, vol. 115, no. 2, pp. 220–228, 2007. View at Publisher · View at Google Scholar
  13. Z. X. Zhang, L. X. Guan, K. Zhang et al., “Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro,” Cell Biology International, vol. 31, no. 6, pp. 645–648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. F. H. Seeger, T. Tonn, N. Krzossok, A. M. Zeiher, and S. Dimmeler, “Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction,” European Heart Journal, vol. 28, no. 6, pp. 766–772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. J. Caterson, L. J. Nesti, K. G. Danielson, and R. S. Tuan, “Human marrow-derived mesenchymal progenitor cells: isolation, culture expansion, and analysis of differentiation,” Applied Biochemistry and Biotechnology B, vol. 20, no. 3, pp. 245–256, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Yeo, N. Saunders, D. Locca et al., “Ficoll-paque versus lymphoprep: a comparative study of two density gradient media for therapeutic bone marrow mononuclear cell preparations,” Regenerative Medicine, vol. 4, no. 5, pp. 689–696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Tondreau, L. Lagneaux, M. Dejeneffe et al., “Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential,” Cytotherapy, vol. 6, no. 4, pp. 372–379, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. B. Eslaminejad, A. Nikmahzar, L. Taghiyar, S. Nadri, and M. Massumi, “Murine mesenchymal stem cells isolated by low density primary culture system,” Development Growth and Differentiation, vol. 48, no. 6, pp. 361–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Xu, A. de Becker, B. van Camp, K. Vanderkerken, and I. van Riet, “An improved harvest and in vitro expansion protocol for murine bone marrow-derived mesenchymal stem cells,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 105940, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Kojima, T. Koide, H. Nagata et al., “In vitro effect of gelatins on murine cell proliferation,” Cancer Biotherapy and Radiopharmaceuticals, vol. 16, no. 5, pp. 431–437, 2001. View at Scopus
  21. P. W. Mason, M. L. Lu, and B. S. Jacobson, “Cell substrate adhesion-induced redistribution of proteins among the apical, basal, and internal domains of the plasma membrane of HeLa cells spreading on gelatin,” The Journal of Biological Chemistry, vol. 262, no. 8, pp. 3746–3753, 1987. View at Scopus
  22. A. Sank, K. Rostami, F. Weaver et al., “New evidence and new hope concerning endothelial seeding of vascular grafts,” The American Journal of Surgery, vol. 164, no. 3, pp. 199–204, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Yeung, P. C. Georges, L. A. Flanagan et al., “Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion,” Cell Motility and the Cytoskeleton, vol. 60, no. 1, pp. 24–34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Stenderup, J. Justesen, E. F. Eriksen, S. I. S. Rattan, and M. Kassem, “Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis,” Journal of Bone and Mineral Research, vol. 16, no. 6, pp. 1120–1129, 2001. View at Scopus
  25. A. J. Friedenstein, N. V. Latzinik, F. G. Yu, E. A. Luria, and I. L. Moskvina, “Bone marrow stromal colony formation requires stimulation by haemopoietic cells,” Bone and Mineral, vol. 18, no. 3, pp. 199–213, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. S. A. Kuznetsov, P. H. Krebsbach, K. Satomura et al., “Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo,” Journal of Bone and Mineral Research, vol. 12, no. 9, pp. 1335–1347, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell, vol. 126, no. 4, pp. 677–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. N. D. Evans, C. Minelli, E. Gentleman et al., “Substrate stiffness affects early differentiation events in embryonic stem cells,” European Cells and Materials, vol. 18, pp. 1–13, 2009. View at Scopus
  29. F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell, vol. 5, no. 1, pp. 17–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. G. J. Her, H. C. Wu, M. H. Chen, M. Y. Chen, S. C. Chang, and T. W. Wang, “Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages,” Acta Biomaterialia, vol. 9, no. 2, pp. 5170–5180, 2013. View at Publisher · View at Google Scholar
  31. N. D. Leipzig and M. S. Shoichet, “The effect of substrate stiffness on adult neural stem cell behavior,” Biomaterials, vol. 30, no. 36, pp. 6867–6878, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. S. Pek, A. C. A. Wan, and J. Y. Ying, “The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel,” Biomaterials, vol. 31, no. 3, pp. 385–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Witkowska-Zimny, K. Walenko, E. Wrobel, P. Mrowka, A. Mikulska, and J. Przybylski, “Effect of substrate stiffness on the osteogenic differentiation of bone marrow stem cells and bone-derived cells,” Cell Biology International, vol. 37, no. 6, pp. 608–616, 2013. View at Publisher · View at Google Scholar
  34. S. A. Ali, I. S. Pappas, and J. G. Parnavelas, “Collagen type IV promotes the differentiation of neuronal progenitors and inhibits astroglial differentiation in cortical cell cultures,” Developmental Brain Research, vol. 110, no. 1, pp. 31–38, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. M. J. Cooke, T. Zahir, S. R. Phillips et al., “Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins,” Journal of Biomedical Materials Research A, vol. 93, no. 3, pp. 824–832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Nakajima, T. Ishimuro, K. Kato et al., “Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation,” Biomaterials, vol. 28, no. 6, pp. 1048–1060, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. H. Fu, Y. C. Wang, S. P. Liu et al., “Differentiation of stem cells: strategies for modifying surface biomaterials,” Cell Transplantation, vol. 20, no. 1, pp. 37–47, 2011. View at Publisher · View at Google Scholar
  38. K. Kolind, K. W. Leong, F. Besenbacher, and M. Foss, “Guidance of stem cell fate on 2D patterned surfaces,” Biomaterials, vol. 33, no. 28, pp. 6626–6633, 2012. View at Publisher · View at Google Scholar
  39. B. Trappmann, J. E. Gautrot, J. T. Connelly et al., “Extracellular-matrix tethering regulates stem-cell fate,” Nature Materials, vol. 11, no. 7, pp. 642–649, 2012. View at Publisher · View at Google Scholar