About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 349825, 16 pages
http://dx.doi.org/10.1155/2013/349825
Research Article

The Investigation of Laparoscopic Instrument Movement Control and Learning Effect

Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Da’an District, Taipei 106, Taiwan

Received 30 April 2013; Revised 27 June 2013; Accepted 2 July 2013

Academic Editor: Jacob J. Sosnoff

Copyright © 2013 Chiuhsiang Joe Lin and Hung-Jen Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Deisinger, C. Cruz-Neira, O. Riedel, and J. Symanzik, “The effect of different viewing devices for the sense of presence and immersion in virtual environments: a comparison of stereoprojections based on monitors, HMDs and screen,” in Design of Computing Systems: Social and Ergonomic Considerations, M. Smith, G. Salvendy, and R. Koubek, Eds., Elsevier Science, Amsterdam, The Netherlands, 1997.
  2. M. W. Khan and M. M. Aziz, “Experience in laparoscopic cholecystectomy,” Mymensingh Medical Journal, vol. 19, no. 1, pp. 77–84, 2010. View at Scopus
  3. T. N. Robinson and G. V. Stiegmann, “Minimally invasive surgery,” Endoscopy, vol. 36, no. 1, pp. 48–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. S. C. Kalser, “National Institutes of Health consensus development conference statement on gallstones and laparoscopic cholecystectomy,” The American Journal of Surgery, vol. 165, no. 4, pp. 390–398, 1993. View at Scopus
  5. R. Berguer, D. L. Forkey, and W. D. Smith, “Ergonomic problems associated with laparoscopic surgery,” Surgical Endoscopy, vol. 13, no. 5, pp. 466–468, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Matsuhira, H. Hashimoto, M. Jinno et al., “Proposal of a new medical manipulator for laparoscopic surgery,” Advanced Robotics, vol. 15, no. 3, pp. 379–382, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Wichert, P. Marcos-Suarez, A. Vereczkei, T. Seitz, H. Bubb, and H. Feussner, “Improvement of the ergonomic situation in the integrated operating room for laparoscopic operations,” International Congress Series, vol. 1268, pp. 842–846, 2004.
  8. A. Vereczkei, H. Bubb, and H. Feussner, “Laparoscopic surgery and ergonomics: It's time to think of ourselves as well,” Surgical Endoscopy and Other Interventional Techniques, vol. 17, no. 10, pp. 1680–1682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Crosthwaite, T. Chung, P. Dunkley, S. Shimi, and A. Cuschieri, “Comparison of direct vision and electronic two- and three-dimensional display systems on surgical task efficiency in endoscopic surgery,” The British Journal of Surgery, vol. 82, no. 6, pp. 849–851, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Tendick and M. C. Cavusoglu, “Human-machine interfaces for minimally invasive surgery,” in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, pp. 2771–2776, November 1997. View at Scopus
  11. F. Tendick, R. Jennings, and G. Tharp, “Sensing and manipulation problems in endoscopic surgery: experiment, analysis and observation,” Presence, vol. 2, pp. 66–81, 1993.
  12. R. Berguer, “Surgery and ergonomics,” Archives of Surgery, vol. 134, no. 9, pp. 1011–1016, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. G. B. Hanna, S. M. Shimi, and A. Cuschieri, “Task performance in endoscopic surgery is influenced by location of the image display,” Annals of Surgery, vol. 227, no. 4, pp. 481–484, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Matern and P. Waller, “Instruments for minimally invasive surgery: principles of ergonomic handles,” Surgical Endoscopy, vol. 13, no. 2, pp. 174–182, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. van Veelen, E. A. L. Nederlof, R. H. M. Goossens, C. J. Schot, and J. J. Jakimowicz, “Ergonomic problems encountered by the medical team related to products used for minimally invasive surgery,” Surgical Endoscopy and Other Interventional Techniques, vol. 17, no. 7, pp. 1077–1081, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Cuschieri, “Whither minimal access surgery: tribulations and expectations,” The American Journal of Surgery, vol. 169, no. 1, pp. 9–19, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Coren, L. M. Ward, and J. T. Enns, Sensation and Perception, Harcourt Brace, New York, NY, USA, 5th edition, 1999.
  18. M. J. Liao and W. W. Johnson, “Characterizing the effects of droplines on target acquisition performance on a 3-D perspective display,” Human Factors, vol. 46, no. 3, pp. 476–496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. C. L. MacKenzie and J. A. Ibbotson, “Survey of surgeons' use, assessment and look-ahead of endoscopic surgical technologies,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 165–168, August 2000. View at Scopus
  20. U. Matern, “The laparoscopic surgeon’s posture,” in Misadventures in Health Care: Inside Stories, M. S. Bogner, Ed., pp. 75–88, Lawrence Erlbaum Associates, New Jersey, NJ, USA, 2004.
  21. J. G. Holden, J. M. Flach, and Y. Donchin, “Perceptual-motor coordination in an endoscopic surgery simulation,” Surgical Endoscopy, vol. 13, no. 2, pp. 127–132, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Tendick, S. Bhoyrul, and L. W. Way, “Comparison of laparoscopic imaging systems and conditions using a knot-tying task,” Computer Aided Surgery, vol. 2, no. 1, pp. 24–33, 1997. View at Publisher · View at Google Scholar
  23. J. Y. Chung and J. M. Sackier, “A method of objectively evaluating improvements in laparoscopic skills,” Surgical Endoscopy, vol. 12, no. 9, pp. 1111–1116, 1998. View at Scopus
  24. C. D. Wickens, “Frames of reference for navigation,” in Attention and Performance XVII: Cognitive Regulation of Performance, Interaction of Theory and Application, D. Gopher and A. Koriat, Eds., pp. 113–144, The MIT Press, Cambridge, Mass, USA, 1999.
  25. R. S. Haluck, R. W. Webster, A. J. Snyder et al., “A virtual reality surgical trainer for navigation in laparoscopic surgery,” Studies in Health Technology and Informatics, vol. 81, pp. 171–176, 2001. View at Scopus
  26. D. H. Birkett, L. G. Josephs, and J. Este-McDonald, “A new 3-D laparoscope in gastrointestinal surgery,” Surgical Endoscopy, vol. 8, no. 12, pp. 1448–1451, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Johnson, “Laparoscopic surgery,” The Lancet, vol. 349, no. 9052, pp. 631–635, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. A. G. Gallagher, N. McClure, J. McGuigan, K. Ritchie, and N. P. Sheehy, “An ergonomic analysis of the fulcrum effect in the acquisition of endoscopic skills,” Endoscopy, vol. 30, no. 7, pp. 617–620, 1998. View at Scopus
  29. I. R. Crothers, A. G. Gallagher, N. McClure, D. T. D. James, and J. McGuigan, “Experienced laparoscopic surgeons are automated to the “fulcrum effect”: an ergonomic demonstration,” Endoscopy, vol. 31, no. 5, pp. 365–369, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. G. D. Langolf, D. B. Chaffin, and J. A. Foulke, “An investigation of Fitts' law using a wide range of movement amplitudes,” Journal of Motor Behavior, vol. 8, pp. 113–128, 1976.
  31. Y. Guiard, M. Beaudouin-Lafon, and D. Mottet, “Navigation as multiscale pointing: extending Fitts' model to very high precision tasks,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: The CHI Is the Limit, pp. 450–457, Pittsburgh, Pa, USA, May 1999. View at Scopus
  32. M. Bohan, D. S. McConnell, A. Chaparro, and S. G. Thompson, “The effects of visual magnification and physical movement scale on the manipulation of a tool with indirect vision,” Journal of Experimental Psychology: Applied, vol. 16, no. 1, pp. 33–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Cao, R. D. Ellis, E. D. Klein, G. W. Auner, M. D. Klein, and A. K. Pandya, “Comparison of a supplemental wide field of view versus a single field of view with zoom on performance in minimally invasive surgery,” Surgical Endoscopy and Other Interventional Techniques, vol. 22, no. 6, pp. 1445–1451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Sherman, L. S. Feldman, D. Stanbridge, R. Kazmi, and G. M. Fried, “Assessing the learning curve for the acquisition of laparoscopic skills on a virtual reality simulator,” Surgical Endoscopy and Other Interventional Techniques, vol. 19, no. 5, pp. 678–682, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. J. Voitk, S. G. S. Tsao, and S. Ignatius, “The tail of the learning curve for laparoscopic cholecystectomy,” The American Journal of Surgery, vol. 182, no. 3, pp. 250–253, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. U. Matern, S. Koneczny, M. Tedeus, K. Dietz, and G. Buess, “Ergonomic testing of two different types of handles via virtual reality simulation,” Surgical Endoscopy and Other Interventional Techniques, vol. 19, no. 8, pp. 1147–1150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. P. M. Fitts, “The information capacity of the human motor system in controlling the amplitude of movement,” Journal of Experimental Psychology, vol. 47, no. 6, pp. 381–391, 1954. View at Publisher · View at Google Scholar · View at Scopus
  38. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.
  39. I. S. MacKenzie, “A note on the information-theoretic basis for Fitts law,” Journal of Motor Behavior, vol. 21, pp. 323–330, 1989.
  40. S. MacKenzie, “Fitts' law as a research and design tool in human-computer interaction,” Human-Computer Interaction, vol. 7, no. 1, pp. 91–139, 1992. View at Scopus
  41. ISO, Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs), Part 9: Requirements for Non-Keyboard Input Devices, International Organization for Standardization, 2000.
  42. S. A. Douglas, A. E. Kirkpatrick, and I. S. MacKenzie, “Testing pointing device performance and user assessment with the ISO 9241, Part 9 standard,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: The CHI Is the Limit, pp. 215–222, Pittsburgh, Pa, USA, May 1999. View at Scopus
  43. C. J. Lin, H. J. Chen, and Y. C. Lo, “Ergonomic investigation of weight distribution of laparoscopic instruments,” Journal of Laparoendoscopic and Advanced Surgical Techniques, vol. 21, no. 5, pp. 411–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. S. R. Herring and M. S. Hallbeck, “Evaluation of a two cursor control device for development of a powered laparoscopic surgical tool,” Ergonomics, vol. 52, no. 8, pp. 891–906, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. R. Herring, A. E. Trejo, and M. S. Hallbeck, “Evaluation of four cursor control devices during a target acquisition task for laparoscopic tool control,” Applied Ergonomics, vol. 41, no. 1, pp. 47–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. W. M. Hancock, G. Langolf, and D. O. Clark, “Development of standard data for stereoscopic microscope work,” AIIE Transactions, vol. 5, no. 2, pp. 113–118, 1973. View at Publisher · View at Google Scholar · View at Scopus
  47. P. M. Fitts and J. R. Peterson, “Information capacity of discrete motor responses,” Journal of Experimental Psychology, vol. 67, no. 2, pp. 103–112, 1964. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Langolf and W. M. Hancock, “Human performance times in microscope work,” AIIE Transactions, vol. 7, no. 2, pp. 110–117, 1975. View at Publisher · View at Google Scholar · View at Scopus
  49. G. P. van Galen and W. P. de Long, “Fitts' law as the outcome of a dynamic noise filtering model of motor control,” Human Movement Science, vol. 14, no. 4-5, pp. 539–571, 1995. View at Scopus
  50. A. Murata and H. Iwase, “Extending fitts' law to a three-dimensional pointing task,” Human Movement Science, vol. 20, no. 6, pp. 791–805, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. R. W. Soukoreff and I. S. MacKenzie, “Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts' law research in HCI,” International Journal of Human Computer Studies, vol. 61, no. 6, pp. 751–789, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. T. P. Wright, “Factors affecting the cost of airplanes,” Journal of Aeronautical Science, vol. 3, pp. 122–128, 1936.
  53. R. Berquer, W. D. Smith, and S. Davis, “An ergonomic study of the optimum operating table height for laparoscopic surgery,” Surgical Endoscopy and Other Interventional Techniques, vol. 16, no. 3, pp. 416–421, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. T. G. Whisenand and H. H. Emurian, “Effects of angle of approach on cursor movement with a mouse: consideration of Fitts' law,” Computers in Human Behavior, vol. 12, no. 3, pp. 481–495, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. R. J. Jagacinski and D. L. Monk, “Fitts' law in two dimensions with hand and head movements,” Journal of Motor Behavior, vol. 17, no. 1, pp. 77–95, 1985. View at Scopus
  56. J. Boritz, K. S. Booth, and W. B. Cowan, “Fitt's Law studies of directional mouse movement,” in Proceedings of Graphics Interface '91, pp. 216–223, Toronto, Canada, June 1991. View at Scopus
  57. K. M. Baird, E. R. Hoffmann, and C. G. Drury, “The effects of probe length on Fitts' law,” Applied Ergonomics, vol. 33, no. 1, pp. 9–14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Treat, “A surgeon's perspective on the difficulties of laparoscopic surgery,” in Computer-Integrated Surgery, R. H. Taylor, S. Lavallée, G. C. Burdea, and R. Mösges, Eds., pp. 559–560, The MIT Press, Cambridge, Mass, USA, 1996.
  59. C. Ferrel, D. Leifflen, J. P. Orliaguet, and Y. Coello, “Pointing movement visually controlled through a video display: adaptation to scale change,” Ergonomics, vol. 43, no. 4, pp. 461–473, 2000. View at Scopus
  60. R. D. Ellis, A. Cao, A. Pandya, A. Composto, M. Chacko, M. Klein, et al., “Optimizing the surgeon-robot interface: the effect of control-display gain & zoom level on movement time,” in Proceedings of the 48th Annual Meeting on Human Factors and Ergonomics Society, New Orleans, La, USA, 2004.
  61. W. L. Jenkins and M. B. Connor, “Some design factors in making settings on a linear scale,” Journal of Applied Psychology, vol. 33, no. 4, pp. 395–409, 1949. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Akamatsu and I. S. MacKenzie, “Changes in applied force to a touchpad during pointing tasks,” International Journal of Industrial Ergonomics, vol. 29, no. 3, pp. 171–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Accot and S. Zhai, “Scale effects in steering law tasks,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1–8, Seattle, Wash, USA, April 2001. View at Scopus
  64. H. D. Jellinek and S. K. Card, “Powermice and user performance,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Seattle, Wash, USA, 1990.
  65. R. Balakrishnan and I. S. MacKenzie, “Performance differences in the fingers, wrist, and forearm in computer input control,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 303–310, Atlanta, Ga, USA, March 1997. View at Scopus
  66. A. Murata, “Empirical evaluation of performance models of pointing accuracy and speed with a PC mouse,” International Journal of Human-Computer Interaction, vol. 8, no. 4, pp. 457–469, 1996. View at Scopus
  67. D. A. Rosenbaum and H. Krist, “Antecedents of action,” in Handbookof Perception and Action, H. Heuer and S. W. Keele, Eds., vol. 2, pp. 3–69, Academic Press, New York, NY, USA, 1996.
  68. J. H. Chien, M. M. Tiwari, I. H. Suh et al., “Accuracy and speed trade-off in robot-assisted surgery,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 6, no. 3, pp. 324–329, 2010. View at Publisher · View at Google Scholar · View at Scopus