About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 353270, 10 pages
http://dx.doi.org/10.1155/2013/353270
Research Article

Asymmetry of the Active Site Loop Conformation between Subunits of Glutamate-1-semialdehyde Aminomutase in Solution

1Dipartimento di Farmacia, Università di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
2Dipartimento di Neuroscienze, Università di Parma, Via Volturno 39, 43125 Parma, Italy
3Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d’Oro 305, 00136 Roma, Italy
4Dipartimento di Scienze Biochimiche “A. Rossi-Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy

Received 15 May 2013; Accepted 27 June 2013

Academic Editor: Barbara Cellini

Copyright © 2013 Barbara Campanini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Jordan and D. Shemin, δ-Aminolevulinic Acid Synthetase, in the Enzymes, Academic Press, New York, NY, USA, 1972.
  2. S. I. Beale and J. D. Weinstein, Biosynthesis of Haem and Chlorophylls, McGraw-Hill, New York, NY, USA, 1990.
  3. C. G. Kannangara, S. P. Gough, P. Bruyant, J. K. Hoober, A. Kahn, and D. von Wettstein, “tRNA(Glu) as a cofactor in delta-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis,” Trends in Biochemical Sciences, vol. 13, pp. 139–143, 1988.
  4. N. V. Grishin, M. A. Phillips, and E. J. Goldsmith, “Modeling of the spatial structure of eukaryotic ornithine decarboxylases,” Protein Science, vol. 4, pp. 1291–1304, 1995.
  5. R. Contestabile, T. Jenn, M. Akhtar, D. Gani, and R. A. John, “Reactions of glutamate 1-semialdehyde aminomutase with R- and S- enantiomers of a novel, mechanism-based inhibitor, 2,3-diaminopropyl sulfate,” Biochemistry, vol. 39, no. 11, pp. 3091–3096, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Smith, C. G. Kannangara, B. Grimm, and D. Von Wettstein, “Characterization of glutamate-1-semialdehyde aminotransferase of Synechococcus. Steady-state kinetic analysis,” European Journal of Biochemistry, vol. 202, no. 3, pp. 749–757, 1991. View at Scopus
  7. M. A. Smith, B. Grimm, C. G. Kannangara, and D. Von Wettstein, “Spectral kinetics of glutamate-1-semialdehyde aminomutase of Synechococcus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 21, pp. 9775–9779, 1991. View at Scopus
  8. C. E. Pugh, J. L. Harwood, and R. A. John, “Mechanism of glutamate semialdehyde aminotransferase: roles of diamino- and dioxo-intermediates in the synthesis of aminolevulinate,” Journal of Biological Chemistry, vol. 267, no. 3, pp. 1584–1588, 1992. View at Scopus
  9. P. Christen and D. E. Metzler, Transaminases, Wiley, New York, NY, USA, 1995.
  10. R. J. Tyacke, J. L. Harwood, and R. A. John, “Properties of the pyridoxaldimine form of glutamate semialdehyde aminotransferase (glutamate-1-semialdehyde 2,1-aminomutase) and analysis of its role as an intermediate in the formation of aminolaevulinate,” Biochemical Journal, vol. 293, part 3, pp. 697–701, 1993. View at Scopus
  11. B. Grimm, A. J. Smith, C. G. Kannangara, and M. Smith, “Gabaculine-resistant glutamate 1-semialdehyde aminotransferase of Synechococcus: deletion of a tripeptide close to the NH2 terminus and internal amino acid substitution,” Journal of Biological Chemistry, vol. 266, no. 19, pp. 12495–12501, 1991. View at Scopus
  12. L. L. Ilag and D. Jahn, “Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R,” Biochemistry, vol. 31, no. 31, pp. 7143–7151, 1992. View at Scopus
  13. S. D'Aguanno, I. N. Gonzales, M. Simmaco, R. Contestabile, and R. A. John, “Stereochemistry of the reactions of glutamate-1-semialdehyde aminomutase with 4,5-diaminovalerate,” Journal of Biological Chemistry, vol. 278, no. 42, pp. 40521–40526, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Hennig, B. Grimm, R. Contestabile, R. A. John, and J. N. Jansonius, “Crystal structure of glutamate-1-semialdehyde aminomutase: an α2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 10, pp. 4866–4871, 1997. View at Scopus
  15. J. Stetefeld, M. Jenny, and P. Burkhard, “Intersubunit signaling in glutamate-1-semialdehyde-aminomutase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13688–13693, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Contestabile, S. Angelaccio, R. Maytum, F. Bossa, and R. A. John, “The contribution of a conformationally mobile, active site loop to the reaction catalyzed by glutamate semialdehyde aminomutase,” Journal of Biological Chemistry, vol. 275, no. 6, pp. 3879–3886, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Sorensen and J. Stetefeld, “Kinemage of action—proposed reaction mechanism of glutamate-1-semialdehyde aminomutase at an atomic level,” Biochemical and Biophysical Research Communications, vol. 413, no. 4, pp. 572–576, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. R. Eftink and C. A. Ghiron, “Fluorescence quenching studies with proteins,” Analytical Biochemistry, vol. 114, no. 2, pp. 199–227, 1981. View at Scopus
  19. E. Gratton and M. Limkeman, “A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution,” Biophysical Journal, vol. 44, no. 3, pp. 315–324, 1983. View at Scopus
  20. R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer,” Annals of the New York Academy of Sciences, vol. 158, pp. 361–376, 1969.
  21. D. M. Jameson and T. L. Hazlett, “Time resolved fluorescence in biology and biochemistry,” in Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, T. G. Dewey, Ed., pp. 106–133, Plenum, New York, NY, USA, 1991.
  22. J. M. Beechem and E. Gratton, “Time-resolved laser spectroscopy in biochemistry,” in Proceedings of the SPIE, International Society for Optical Engineering, Bellingham, Wash, USA, 1988.
  23. M. R. Eftink, “The use of fluorescence methods to monitor unfolding transitions in proteins,” Biophysical Journal, vol. 66, no. 2 I, pp. 482–501, 1994. View at Scopus
  24. E. J. Faeder and G. G. Hammes, “Kinetic studies of tryptophan synthetase. Interaction of L-serine, indole, and tryptophan with the native enzyme,” Biochemistry, vol. 10, no. 6, pp. 1041–1045, 1971. View at Scopus
  25. S. Benci, S. Vaccari, A. Mozzarelli, and P. F. Cook, “Time-resolved fluorescence of O-acetylserine sulfhydrylase,” Biochimica et Biophysica Acta, vol. 1429, no. 2, pp. 317–330, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Salsi, R. Guan, B. Campanini et al., “Exploring O-acetylserine sulfhydrylase-B isoenzyme from Salmonella typhimurium by fluorescence spectroscopy,” Archives of Biochemistry and Biophysics, vol. 505, no. 2, pp. 178–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Mozzarelli and S. Bettati, “Exploring the pyridoxal 5′-phosphate-dependent enzymes,” Chemical Record, vol. 6, no. 5, pp. 275–287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Chattopadhyay, M. Meier, S. Ivaninskii et al., “Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes,” Biochemistry, vol. 46, no. 28, pp. 8315–8330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Salsi, B. Campanini, S. Bettati et al., “A two-step process controls the formation of the bienzyme cysteine synthase complex,” Journal of Biological Chemistry, vol. 285, no. 17, pp. 12813–12822, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Pennacchietti, T. M. Lammens, G. Capitani et al., “Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH,” Journal of Biological Chemistry, vol. 284, no. 46, pp. 31587–31596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. P. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, NY, USA, 1983.
  32. S. Vaccari, S. Benci, A. Peracchi, and A. Mozzarelli, “Time-resolved fluorescence of tryptophan synthase,” Biophysical Chemistry, vol. 61, no. 1, pp. 9–22, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Arrio-Dupont, “Fluorescence study of Schiff bases of pyridoxal. Comparison with L-aspartate aminotransferase,” Photochemistry and Photobiology, vol. 12, no. 4, pp. 297–315, 1970. View at Scopus
  34. E. Passera, B. Campanini, F. Rossi et al., “Human kynurenine aminotransferase II—reactivity with substrates and inhibitors,” FEBS Journal, vol. 278, no. 11, pp. 1882–1900, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. T. Olmo, F. Sánchez-Jiménez, M. A. Medina, and H. Hayashi, “Spectroscopic analysis of recombinant rat histidine decarboxylase,” Journal of Biochemistry, vol. 132, no. 3, pp. 433–439, 2002. View at Scopus
  36. S. Benci, S. Vaccari, A. Mozzarelli, and P. F. Cook, “Time-resolved fluorescence of O-acetylserine sulfhydrylase catalytic intermediates,” Biochemistry, vol. 36, no. 49, pp. 15419–15427, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Bertoldi, B. Cellini, T. Clausen, and C. B. Voltattorni, “Spectroscopic and kinetic analyses reveal the pyridoxal 5′-phosphate binding mode and the catalytic features of Treponema denticola cystalysin,” Biochemistry, vol. 41, no. 29, pp. 9153–9164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Campanini, S. Raboni, S. Vaccari et al., “Surface-exposed tryptophan residues are essential for O-acetylserine sulfhydrylase structure, function, and stability,” Journal of Biological Chemistry, vol. 278, no. 39, pp. 37511–37519, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. A. N. Lane, “The accessibility of the active site and conformation states of the beta 2 subunit of tryptophan synthase studied by fluorescence quenching,” European Journal of Biochemistry, vol. 133, no. 3, pp. 531–538, 1983. View at Scopus
  40. M. R. Eftink and C. A. Ghiron, “Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies,” Biochemistry, vol. 15, no. 3, pp. 672–680, 1976. View at Scopus
  41. M. R. Eftink and C. A. Ghiron, “Fluorescence quenching of indole and model micelle systems,” Journal of Physical Chemistry, vol. 80, no. 5, pp. 486–493, 1976. View at Scopus
  42. S. Raboni, S. Bettati, and A. Mozzarelli, “Tryptophan synthase: a mine for enzymologists,” Cellular and Molecular Life Sciences, vol. 66, no. 14, pp. 2391–2403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S. P. Nair, J. L. Harwood, and R. A. John, “Direct identification and quantification of the cofactor in glutamate semialdehyde aminotransferase from pea leaves,” FEBS Letters, vol. 283, no. 1, pp. 4–6, 1991. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Brody, J. S. Andersen, C. G. Kannangara, M. Meldgaard, P. Roepstorff, and D. Von Wettstein, “Characterization of the different spectral forms of glutamate 1-semialdehyde aminotransferase by mass spectrometry,” Biochemistry, vol. 34, no. 49, pp. 15918–15924, 1995. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Fenalti, R. H. P. Law, A. M. Buckle et al., “GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop,” Nature Structural and Molecular Biology, vol. 14, no. 4, pp. 280–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Bertoldi, M. Gonsalvi, R. Contestabile, and C. B. Voltattorni, “Mutation of tyrosine 332 to phenylalanine converts dopa decarboxylase into a decarboxylation-dependent oxidative deaminase,” Journal of Biological Chemistry, vol. 277, no. 39, pp. 36357–36362, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Burkhard, C.-H. Tai, C. M. Ristroph, P. F. Cook, and J. N. Jansonius, “Ligand binding induces a large conformational change in O-acetylserine sulfhydrylase from Salmonella typhimurium,” Journal of Molecular Biology, vol. 291, no. 4, pp. 941–953, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Tian, R. Guan, E. Salsi et al., “Identification of the structural determinants for the stability of substrate and aminoacrylate external schiff bases in O-acetylserine sulfhydrylase-A,” Biochemistry, vol. 49, no. 29, pp. 6093–6103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Mozzarelli, S. Bettati, B. Campanini et al., “The multifaceted pyridoxal 5′-phosphate-dependent O-acetylserine sulfhydrylase,” Biochimica et Biophysica Acta, vol. 1814, no. 11, pp. 1497–1510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Raboni, R. Contestabile, F. Spyrakis et al., “Pyridoxal 5′-phosphate-dependent enzymes: catalysis, conformation and genomics,” in Comprehensive Natural Products II Chemistry and Biochemistry, El Sevier, Oxford, UK, 2010.