About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 358643, 9 pages
http://dx.doi.org/10.1155/2013/358643
Research Article

Regulation of PKC Autophosphorylation by Calponin in Contractile Vascular Smooth Muscle Tissue

1Department of Health Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA
2Department of Pharmacology, College of Medicine, Dankook University, 119 Dandaero, Chungnam, Cheonan-si 330-714, Republic of Korea

Received 20 August 2013; Revised 10 October 2013; Accepted 24 October 2013

Academic Editor: Goutam Ghosh Choudhury

Copyright © 2013 Hak Rim Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. R. Kim, S. Appel, S. Vetterkind, S. S. Gangopadhyay, and K. G. Morgan, “Smooth muscle signalling pathways in health and disease: contractility in health and disease review series,” Journal of Cellular and Molecular Medicine, vol. 12, no. 6A, pp. 2165–2180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. K. G. Morgan and S. S. Gangopadhyay, “Signal transduction in smooth muscle: invited review: cross-bridge regulation by thin filament-associated proteins,” Journal of Applied Physiology, vol. 91, no. 2, pp. 953–962, 2001. View at Scopus
  3. S. S. Gangopadhyay, E. Kengni, S. Appel et al., “Smooth muscle archvillin is an ERK scaffolding protein,” The Journal of Biological Chemistry, vol. 284, no. 26, pp. 17607–17615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. C. Newton, “Protein kinase C: poised to signal,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 298, no. 3, pp. E395–E402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. M. Cameron and P. J. Parker, “Protein kinase C—a family of protein kinases, allosteric effectors or both?” Advances in Enzyme Regulation, vol. 50, no. 1, pp. 169–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Rosse, M. Linch, S. Kermorgant, A. J. M. Cameron, K. Boeckeler, and P. J. Parker, “PKC and the control of localized signal dynamics,” Nature Reviews Molecular Cell Biology, vol. 11, no. 2, pp. 103–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. A. Khalil and K. G. Morgan, “Phenylephrine-induced translocation of protein kinase C and shortening of two types of vascular cells of the ferret,” The Journal of Physiology, vol. 455, pp. 585–599, 1992. View at Scopus
  8. R. A. Khalil, C. Lajoie, M. S. Resnick, and K. G. Morgan, “Ca2+-independent isoforms of protein kinase C differentially translocate in smooth muscle,” The American Journal of Physiology—Cell Physiology, vol. 263, no. 3, pp. C714–C719, 1992. View at Scopus
  9. M. P. Walsh, J. E. Andrea, B. G. Allen, O. Clement-Chomienne, E. M. Collins, and K. G. Morgan, “Smooth muscle protein kinase C,” Canadian Journal of Physiology and Pharmacology, vol. 72, no. 11, pp. 1392–1399, 1994. View at Scopus
  10. M. P. Walsh, A. Horowitz, O. Clément-Chomienne, J. E. Andrea, B. G. Allen, and K. G. Morgan, “Protein Kinase C mediation of Ca2+-independent contractions of vascular smooth muscle,” Biochemistry and Cell Biology, vol. 74, no. 4, pp. 485–502, 1996. View at Scopus
  11. A. C. Newton, “Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm,” Biochemical Journal, vol. 370, part 2, pp. 361–371, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. V. O. Rybin, A. Sabri, J. Short, J. C. Braz, J. D. Molkentin, and S. F. Steinberg, “Cross-regulation of novel protein kinase C (PKC) isoform function in cardiomyocytes: role of PKCε in activation loop phosphorylations and PKCδ in hydrophobic motif phosphorylations,” The Journal of Biological Chemistry, vol. 278, no. 16, pp. 14555–14564, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. C. Newton, “Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions,” Chemical Reviews, vol. 101, no. 8, pp. 2353–2364, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. D. B. Parekh, W. Ziegler, and P. J. Parker, “Multiple pathways control protein kinase C phosphorylation,” The EMBO Journal, vol. 19, no. 4, pp. 496–503, 2000. View at Scopus
  15. G. Hansra, P. Garcia-Paramio, C. Prevostel, R. D. H. Whelan, F. Bornancin, and P. J. Parker, “Multisite dephosphorylation and desensitization of conventional protein kinase C isotypes,” Biochemical Journal, vol. 342, part 2, pp. 337–344, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Cenni, H. Döppler, E. D. Sonnenburg, N. Maraldi, A. C. Newton, and A. Toker, “Regulation of novel protein kinase C ε by phosphorylation,” Biochemical Journal, vol. 363, part 3, pp. 537–545, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Behn-Krappa and A. C. Newton, “The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation,” Current Biology, vol. 9, no. 14, pp. 728–737, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. K. England and M. G. Rumsby, “Changes in protein kinase C ε phosphorylation status and intracellular localization as 3T3 and 3T6 fibroblasts grow to confluency and quiescence: a role for phosphorylation at ser-729?” Biochemical Journal, vol. 352, part 1, pp. 19–26, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. V. O. Rybin, J. Guo, A. Sabri, H. Elouardighi, E. Schaefer, and S. F. Steinberg, “Stimulus-specific differences in protein kinase C δ localization and activation mechanisms in cardiomyocytes,” The Journal of Biological Chemistry, vol. 279, no. 18, pp. 19350–19361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Horowitz, C. B. Menice, R. Laporte, and K. G. Morgan, “Mechanisms of smooth muscle contraction,” Physiological Reviews, vol. 76, no. 4, pp. 967–1003, 1996. View at Scopus
  21. B. Leinweber, A. M. Parissenti, C. Gallant et al., “Regulation of protein kinase C by the cytoskeletal protein calponin,” The Journal of Biological Chemistry, vol. 275, no. 51, pp. 40329–40336, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. H.-D. Je, S. S. Gangopadhyay, T. D. Ashworth, and K. G. Morgan, “Calponin is required for agonist-induced signal transduction—evidence from an antisense approach in ferret smooth muscle,” The Journal of Physiology, vol. 537, part 2, pp. 567–577, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. C. B. Menice, J. Hulvershorn, L. P. Adam, C.-L. A. Wang, and K. G. Morgan, “Calponin and mitogen-activated protein kinase signaling in differentiated vascular smooth muscle,” The Journal of Biological Chemistry, vol. 272, no. 40, pp. 25157–25161, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Slater, F. J. Taddeo, A. Mazurek et al., “Inhibition of membrane lipid-independent protein kinase Cα activity by phorbol esters, diacylglycerols, and bryostatin-1,” The Journal of Biological Chemistry, vol. 273, no. 36, pp. 23160–23168, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. J. R. Stewart, N. E. Ward, C. G. Ioannides, and C. A. O'brian, “Resveratrol preferentially inhibits protein kinase C-catalyzed phosphorylation of a cofactor-independent, arginine-rich protein substrate by a novel mechanism,” Biochemistry, vol. 38, no. 40, pp. 13244–13251, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. Y.-H. Lee, I. Kim, R. Laporte, M. P. Walsh, and K. G. Morgan, “Isozyme-specific inhibitors of protein kinase C translocation: effects on contractility of single permeabilized vascular muscle cells of the ferret,” The Journal of Physiology, vol. 517, part 3, pp. 709–720, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Kobayashi, K. Taguchi, S. Nemoto, T. Nogami, T. Matsumoto, and K. Kamata, “Activation of the PDK-1/Akt/eNOS pathway involved in aortic endothelial function differs between hyperinsulinemic and insulin-deficient diabetic rats,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 297, no. 5, pp. H1767–H1775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. P. Scheid, M. Parsons, and J. R. Woodgett, “Phosphoinositide-dependent phosphorylation of PDK1 regulates nuclear translocation,” Molecular and Cellular Biology, vol. 25, no. 6, pp. 2347–2363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. M. Gilligan, R. Sarid, and J. Weese, “Adducin in platelets: activation-induced phosphorylation by PKC and proteolysis by calpain,” Blood, vol. 99, no. 7, pp. 2418–2426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. S. C. Kiley, K. J. Clark, S. K. Duddy, D. R. Welch, and S. Jaken, “Increased protein kinase Cδ in mammary tumor cells: relationship to transformation and metastatic progression,” Oncogene, vol. 18, no. 48, pp. 6748–6757, 1999. View at Scopus
  31. B. D. Leinweber, P. C. Leavis, Z. Grabarek, C.-L. A. Wang, and K. G. Morgan, “Extracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins,” Biochemical Journal, vol. 344, part 1, pp. 117–123, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Suematsu, M. Resnick, and K. G. Morgan, “Ca2+-independent change in phosphorylation of the myosin light chain during relaxation of ferret aorta by vasodilators,” The Journal of Physiology, vol. 440, pp. 85–93, 1991. View at Scopus
  33. E. Suematsu, M. Resnick, and K. G. Morgan, “Change of Ca2+ requirement for myosin phosphorylation by prostaglandin F2α,” The American Journal of Physiology—Cell Physiology, vol. 261, no. 2, pp. C253–C258, 1991. View at Scopus
  34. Y. Shakirova, J. Bonnevier, S. Albinsson et al., “Increased Rho activation and PKC-mediated smooth muscle contractility in the absence of caveolin-1,” The American Journal of Physiology—Cell Physiology, vol. 291, no. 6, pp. C1326–C1335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. C. I. Kahwaji, S. Sheibani, S. Han et al., “Evidence that simulated microgravity may alter the vascular nonreceptor tyrosine kinase second messenger pathway,” Proceedings of the Western Pharmacology Society, vol. 43, pp. 75–77, 2000. View at Scopus
  36. H.-D. Je, C. Gallant, P. C. Leavis, and K. G. Morgan, “Caveolin-1 regulates contractility in differentiated vascular smooth muscle,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 286, no. 1, pp. H91–H98, 2004. View at Scopus
  37. C.-L. Chen, Y.-T. Hsieh, and H.-C. Chen, “Phosphorylation of adducin by protein kinase Cδ promotes cell motility,” Journal of Cell Science, vol. 120, no. 7, pp. 1157–1167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. A. Parker, K. Takahashi, J. X. Tang, T. Tao, and K. G. Morgan, “Cytoskeletal targeting of calponin in differentiated, contractile smooth muscle cells of the ferret,” The Journal of Physiology, vol. 508, no. 1, pp. 187–198, 1998. View at Scopus
  39. C.-L. A. Wang, “Photocrosslinking of calmodulin and/or actin to chicken gizzard caldesmon,” Biochemical and Biophysical Research Communications, vol. 156, no. 2, pp. 1033–1038, 1988. View at Scopus
  40. C.-L. A. Wang, L.-W. C. Wang, S. Xu, R. C. Lu, V. Saavedra-Alanis, and J. Bryan, “Localization of the calmodulin- and the actin-binding sites of caldesmon,” The Journal of Biological Chemistry, vol. 266, no. 14, pp. 9166–9172, 1991. View at Scopus
  41. C.-L. A. Wang, “Caldesmon and smooth-muscle regulation,” Cell Biochemistry and Biophysics, vol. 35, no. 3, pp. 275–288, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Liu, C. Graham, A. Li, R. J. Fisher, and S. Shaw, “Phosphorylation of the protein kinase C-theta activation loop and hydrophobic motif regulates its kinase activity, but only activation loop phosphorylation is critical to in vivo nuclear-factor-κB induction,” Biochemical Journal, vol. 361, no. 2, pp. 255–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Cazaubon, F. Bornancin, and P. J. Parker, “Threonine-497 is a critical site for permissive activation of protein kinase Cα,” Biochemical Journal, vol. 301, no. 2, pp. 443–448, 1994. View at Scopus
  44. F. Bornancin and P. J. Parker, “Phosphorylation of threonine 638 critically controls the dephosphorylation and inactivation of protein kinase Cα,” Current Biology, vol. 6, no. 9, pp. 1114–1123, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Stempka, M. Schnölzer, S. Radke, G. Rincke, F. Marks, and M. Gschwendt, “Requirements of protein kinase Cδ for catalytic function: role of glutamic acid 500 and autophosphorylation on serine 643,” The Journal of Biological Chemistry, vol. 274, no. 13, pp. 8886–8892, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. S. C. Kiley, K. J. Clark, M. Goodnough, D. R. Welch, and S. Jaken, “Protein kinase C δ involvement in mammary tumor cell metastasis,” Cancer Research, vol. 59, no. 13, pp. 3230–3238, 1999. View at Scopus
  47. C. Dessy, I. Kim, C. L. Sougnez, R. Laporte, and K. G. Morgan, “A role for MAP kinase in differentiated smooth muscle contraction evoked by α-adrenoceptor stimulation,” The American Journal of Physiology—Cell Physiology, vol. 275, no. 4, pp. C1081–C1086, 1998. View at Scopus
  48. W. G. Wier and K. G. Morgan, “Alpha1-adrenergic signaling mechanisms in contraction of resistance arteries,” Reviews of Physiology, Biochemistry and Pharmacology, vol. 150, pp. 91–139, 2003. View at Scopus