About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 358945, 9 pages
http://dx.doi.org/10.1155/2013/358945
Research Article

A Comparative Study for the Evaluation of Two Doses of Ellagic Acid on Hepatic Drug Metabolizing and Antioxidant Enzymes in the Rat

1Department of Biology, Pamukkale University, Kinikli Campus, 20070 Denizli, Turkey
2Department of Biochemistry, Institute of Natural and Applied Science, Middle East Technical University, 06800 Ankara, Turkey
3Faculty of Art & Sciences, Biology Department, Pamukkale University, Kinikli, 20070 Denizli, Turkey

Received 15 April 2013; Accepted 4 June 2013

Academic Editor: Jason Shearer

Copyright © 2013 Gurbet Celik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. Daniel, A. S. Krupnick, Y.-H. Heur, J. A. Blinzler, R. W. Nims, and G. D. Stoner, “Extraction, stability, and quantitation of ellagic acid in various fruits and nuts,” Journal of Food Composition and Analysis, vol. 2, no. 4, pp. 338–349, 1989. View at Scopus
  2. H. Mukhtar, M. Das, and D. R. Bickers, “Inhibition of 3-methylcholanthrene-induced skin tumorigenicity in BALB/c mice by chronic oral feeding of trace amounts of ellagic acid in drinking water,” Cancer Research, vol. 46, no. 5, pp. 2262–2265, 1986. View at Scopus
  3. S. Mandal, A. Ahuja, N. M. Shivapurkar, S. J. Cheng, J. D. Groopman, and G. D. Stoner, “Inhibition of aflatoxin B1 mutagenesis in Salmonella typhimurium and DNA damage in cultured rat and human tracheobronchial tissues by ellagic acid,” Carcinogenesis, vol. 8, no. 11, pp. 1651–1656, 1987. View at Scopus
  4. R. Dixit and B. Gold, “Inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA methylation by ellagic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 21, pp. 8039–8043, 1986. View at Scopus
  5. C. V. Rao, K. Tokumo, J. Rigotty, E. Zang, G. Kelloff, and B. S. Reddy, “Chemoprevention of colon carcinogenesis by dietary administration of piroxicam, α-difluoromethylornithine, 16α-fluoro-5-androsten-17-one, and ellagic acid individually and in combination,” Cancer Research, vol. 51, no. 17, pp. 4528–4534, 1991. View at Scopus
  6. M. Boukharta, G. Jalbert, and A. Castonguay, “Biodistribution of ellagic acid and dose-related inhibition of lung tumorigenesis in A/J mice,” Nutrition and Cancer, vol. 18, no. 2, pp. 181–189, 1992. View at Scopus
  7. P. Lesca, “Protective effects of ellagic acid and other plant phenols on benzo[a]pyrene-induced neoplasia in mice,” Carcinogenesis, vol. 4, no. 12, pp. 1651–1653, 1983. View at Scopus
  8. M. Das, D. R. Bickers, and H. Mukhtar, “Effect of ellagic acid on hepatic and pulmonary xenobiotic metabolism in mice: studies on the mechanism of its anticarcinogenic action,” Carcinogenesis, vol. 6, no. 10, pp. 1409–1413, 1985. View at Scopus
  9. A. W. Wood, M. T. Huang, and R. L. Chang, “Inhibition of the mutagenicity of bay-region diol epoxides of polycyclic aromatic hydrocarbons by naturally occurring plant phenols: exceptional activity of ellagic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 18, pp. 5513–5517, 1982. View at Scopus
  10. S. Majid, K. L. Khanduja, R. K. Gandhi, S. Kapur, and R. R. Sharma, “Influence of ellagic acid on antioxidant defense system and lipid peroxidation in mice,” Biochemical Pharmacology, vol. 42, no. 7, pp. 1441–1445, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. D. H. Barch and C. C. Fox, “Selective inhibition of methylbenzylnitrosamine-induced formation of esophageal O6-methylguanine by dietary ellagic acid in rats,” Cancer Research, vol. 48, no. 24, pp. 7088–7092, 1988. View at Scopus
  12. H. Mukhtar, B. J. Del Tito Jr., and C. L. Marcelo, “Ellagic acid: a potent naturally occurring inhibitor of benzo[a]pyrene metabolism and its subsequent glucuronidation, sulfation and covalent binding to DNA in cultured BALB/c mouse keratinocytes,” Carcinogenesis, vol. 5, no. 12, pp. 1565–1571, 1984. View at Scopus
  13. H. U. Gali, E. M. Perchellet, and J.-P. Perchellet, “Inhibition of tumor promoter-induced ornithine decarboxylase activity by tannic acid and other polyphenols in mouse epidermis in vivo,” Cancer Research, vol. 51, no. 11, pp. 2820–2825, 1991. View at Scopus
  14. A. W. Wood, D. S. Smith, R. L. Chang, M. T. Huang, and A. H. Conney, “Effects of flavonoids on the metabolism of xenobiotics,” Progress in Clinical and Biological Research, vol. 213, pp. 195–210, 1986. View at Scopus
  15. A. Sen and E. Arinç, “Preparation of highly purified cytochrome P4501A1 from leaping mullet (Liza saliens) liver microsomes and its biocatalytic, molecular and immunochemical properties,” Comparative Biochemistry and Physiology C, vol. 121, no. 1–3, pp. 249–265, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. W.-G. Chung, A. Sen, J.-L. Wang-Buhler et al., “cDNA-directed expression of a functional zebrafish CYP1A in yeast,” Aquatic Toxicology, vol. 70, no. 2, pp. 111–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Zou, M. R. Harkey, and G. L. Henderson, “Effects of herbal components on cDNA-expressed cytochrome P450 enzyme catalytic activity,” Life Sciences, vol. 71, no. 13, pp. 1579–1589, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. W. R. Miller, T. J. Anderson, and W. J. L. Jack, “Relationship between tumour aromatase activity, tumour characteristics and response to therapy,” Journal of Steroid Biochemistry and Molecular Biology, vol. 37, no. 6, pp. 1055–1059, 1990. View at Publisher · View at Google Scholar · View at Scopus
  19. R. W. Brueggemeier, J. A. Richards, S. Joomprabutra, A. S. Bhat, and J. L. Whetstone, “Molecular pharmacology of aromatase and its regulation by endogenous and exogenous agents,” Journal of Steroid Biochemistry and Molecular Biology, vol. 79, no. 1–5, pp. 75–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. L. S. Adams, Y. Zhang, N. P. Seeram, D. Heber, and S. Chen, “Pomegranate ellagitannin-derived compounds exhibit antiproferative and antiaromatase activity in breast cancer cells in vitro,” Cancer Prevention Research, vol. 3, no. 1, pp. 108–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Rocha, L. Wang, M. Penichet, and M. Martins-Green, “Pomegranate juice and specific components inhibit cell and molecular processes critical for metastasis of breast cancer,” Breast Cancer Research and Treatment, vol. 136, pp. 647–658, 2012.
  22. J. D. Hayes and D. J. Pulford, “The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance,” Critical Reviews in Biochemistry and Molecular Biology, vol. 30, no. 6, pp. 445–600, 1995. View at Scopus
  23. V. P. Kelly, E. M. Ellis, M. M. Manson et al., “Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H:Quinone oxidoreductase in rat liver,” Cancer Research, vol. 60, no. 4, pp. 957–969, 2000. View at Scopus
  24. N. Devipriya, A. R. Sudheer, and V. P. Menon, “Dose-response effect of ellagic acid on circulatory antioxidants and lipids during alcohol-induced toxicity in experimental rats,” Fundamental and Clinical Pharmacology, vol. 21, no. 6, pp. 621–630, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. N. A. El-Boghdady, “Protective effect of ellagic acid and pumpkin seed oil against methotrexate-induced small intestine damage in rats,” Indian Journal of Biochemistry and Biophysics, vol. 48, no. 6, pp. 380–387, 2011. View at Scopus
  26. M. A. Rosillo, M. Sanchez-Hidalgo, A. Cardeno et al., “Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats,” Pharmacological Research, vol. 66, pp. 235–242, 2012.
  27. A. Sen and A. Kirikbakan, “Biochemical characterization and distribution of glutathione S-transferases in leaping mullet (Liza saliens),” Biochemistry, vol. 69, no. 9, pp. 993–1000, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. P. K. Smith, R. I. Krohn, G. T. Hermanson et al., “Measurement of protein using bicinchoninic acid,” Analytical Biochemistry, vol. 150, no. 1, pp. 76–85, 1985. View at Scopus
  29. Y. Imai, A. Ito, and R. Sato, “Evidence for biochemically different types of vesicles in the hepatic microsomal fraction,” Journal of Biochemistry, vol. 60, no. 4, pp. 417–428, 1966. View at Scopus
  30. T. Nash, “The colorimetric estimation of formaldehyde by means of the Hantzsch reaction,” The Biochemical Journal, vol. 55, no. 3, pp. 416–421, 1953. View at Scopus
  31. J. Cochin and J. Axelrod, “Biochemical and pharmacological changes in the rat following chronic administration of morphine nalorphine and normorphine,” Journal of Pharmacology and Experimental Therapeutics, vol. 125, pp. 105–110, 1959.
  32. L. Kragie, S. D. Turner, C. J. Patten, C. L. Crespi, and D. M. Stresser, “Assessing pregnancy risks of azole antifungals using a high throughput aromatase inhibition assay,” Endocrine Research, vol. 28, no. 3, pp. 129–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Ernster, “[56] DT diaphorase,” in Methods in Enzymology, R. W. Estabrook and M. E. Pullman, Eds., vol. 10, pp. 309–317, Academic Press, 1967. View at Publisher · View at Google Scholar
  34. W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione S transferases. The first enzymatic step in mercapturic acid formation,” Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974. View at Scopus
  35. H. Aebi, “Catalase,” in Method of Enzymatic Analysis, H. V. Bergrenyer, Ed., pp. 673–684, Academic Press, New York, NY, USA, 2nd edition, 1974.
  36. D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967. View at Scopus
  37. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  38. A.-L. Minn, H. Pelczar, C. Denizot et al., “Characterization of microsomal cytochrome P450-dependent monooxygenases in the rat olfactory mucosa,” Drug Metabolism and Disposition, vol. 33, no. 8, pp. 1229–1237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. H. H. Agus, P. Tekin, M. Bayav, A. Semiz, and A. Sen, “Drug interaction potential of the seed extract of Urtica urens L. (dwarf nettle),” Phytotherapy Research, vol. 23, no. 12, pp. 1763–1770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. E. G. Giannini, R. Testa, and V. Savarino, “Liver enzyme alteration: a guide for clinicians,” Canadian Medical Association Journal, vol. 172, no. 3, pp. 367–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. D. H. Barch, L. M. Rundhaugen, P. E. Thomas, and P. Kardos, “Dietary ellagic acid inhibits the enzymatic activity of CYP1A1 without altering hepatic concentrations of CYP1A1 or CYP1A1 mRNA,” Biochemical and Biophysical Research Communications, vol. 201, no. 3, pp. 1477–1482, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. F. P. Guengerich, D.-H. Kim, and M. Iwasaki, “Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects,” Chemical Research in Toxicology, vol. 4, no. 2, pp. 168–179, 1991. View at Scopus
  43. D. R. Koop, “Alcohol metabolism's damaging effects on the cell: a focus on reactive oxygen generation by the enzyme cytochrome P450 2E1,” Alcohol Research and Health, vol. 29, no. 4, pp. 274–280, 2006. View at Scopus
  44. T. Wilson, M. J. Lewis, K. L. Cha, and B. Gold, “The effect of ellagic acid on xenobiotic metabolism by cytochrome P-450IIE1 and nitrosodimethylamine mutagenicity,” Cancer Letters, vol. 61, no. 2, pp. 129–134, 1992. View at Publisher · View at Google Scholar · View at Scopus
  45. B. J. Song, “Gene structure and multiple regulations of the ethanol-inducible cytochrome P-4502E1 (CYP2EI) subfamily,” in Alcohol and Hormones, R. R. Watson, Ed., pp. 177–192, Totowa Humana Press, 1994.
  46. D. Farkas, L. E. Oleson, Y. Zhao et al., “Pomegranate juice does not impair clearance of oral or intravenous midazolam, a probe for cytochrome P450-3A activity: comparison with grapefruit juice,” Journal of Clinical Pharmacology, vol. 47, no. 3, pp. 286–294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Hidaka, K.-I. Fujita, T. Ogikubo et al., “Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity,” Drug Metabolism and Disposition, vol. 32, no. 6, pp. 581–583, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Ramos, “Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways,” Molecular Nutrition and Food Research, vol. 52, no. 5, pp. 507–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M.-H. Pan and C.-T. Ho, “Chemopreventive effects of natural dietary compounds on cancer development,” Chemical Society Reviews, vol. 37, no. 11, pp. 2558–2574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Vauzour, A. Rodriguez-Mateos, G. Corona, M. J. Oruna-Concha, and J. P. E. Spencer, “Polyphenols and human health: prevention of disease and mechanisms of action,” Nutrients, vol. 2, no. 11, pp. 1106–1131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. Y.-J. Surh and H.-K. Na, “NF-κB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals,” Genes and Nutrition, vol. 2, no. 4, pp. 313–317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. P. J. Ansell, C. Espinosa-Nicholas, E. M. Curran et al., “In vitro and in vivo regulation of antioxidant response element-dependent gene expression by estrogens,” Endocrinology, vol. 145, no. 1, pp. 311–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. L. C. Appelt and M. M. Reicks, “Soy induces phase II enzymes but does not inhibit dimethylbenz[a]anthracene-induced carcinogenesis in female rats,” Journal of Nutrition, vol. 129, no. 10, pp. 1820–1826, 1999. View at Scopus
  54. W. A. Nijhoff, M. A. Bosboom, M. H. Smidt, and W. M. H. Peters, “Enhancement of rat hepatic and gastrointestinal glutathione and glutathione S-transferases by α-angelicalactone and flavone,” Carcinogenesis, vol. 16, no. 3, pp. 607–612, 1995. View at Scopus
  55. H. Wiegand, C. Boesch-Saadatmandi, I. Regos, D. Treutter, S. Wolffram, and G. Rimbach, “Effects of quercetin and catechin on hepatic glutathione-s transferase (GST), NAD(P)H quinone oxidoreductase 1 (NQO1), and antioxidant enzyme activity levels in rats,” Nutrition and Cancer, vol. 61, no. 5, pp. 717–722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Doronicheva, H. Yasui, and H. Sakurai, “Chemical structure-dependent differential effects of flavonoids on the catalase activity as evaluated by a chemiluminescent method,” Biological and Pharmaceutical Bulletin, vol. 30, no. 2, pp. 213–217, 2007. View at Publisher · View at Google Scholar · View at Scopus