About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 359412, 18 pages
http://dx.doi.org/10.1155/2013/359412
Research Article

Isolation, Characterization, and Transplantation of Cardiac Endothelial Cells

1Department of Pathology, Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
2Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
3Department of Oral Biology, School of Dentistry, University of Washington, Seattle, WA 98195, USA
4Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand

Received 1 May 2013; Accepted 28 July 2013

Academic Editor: Hannes Stockinger

Copyright © 2013 Busadee Pratumvinit et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Lloyd-Jones, R. Adams, M. Carnethon et al., “Heart disease and stroke statistics—2009 update. A report from the American heart association statistics committee and stroke statistics subcommittee,” Circulation, vol. 119, no. 3, pp. 480–486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. V. J. Dzau, E. M. Antman, H. R. Black et al., “The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes—part I: pathophysiology and clinical trial evidence (risk factors through stable coronary artery disease),” Circulation, vol. 114, no. 25, pp. 2850–2870, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. G. Dong, S. Bernasconi, S. Lostaglio et al., “A general strategy for isolation of endothelial cells from murine tissues: characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 8, pp. 1599–1604, 1997. View at Scopus
  4. S. S. Barbieri and B. B. Weksler, “Tobacco smoke cooperates with interleukin-1β to alter β-catenin trafficking in vascular endothelium resulting in increased permeability and induction of cyclooxygenase-2 expression in vitro and in vivo,” FASEB Journal, vol. 21, no. 8, pp. 1831–1843, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Ribatti, B. Nico, A. Vacca, L. Roncali, and F. Dammacco, “Endothelial cell heterogeneity and organ specificity,” Journal of Hematotherapy and Stem Cell Research, vol. 11, no. 1, pp. 81–90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Nees, A. L. Gerbes, and E. Gerlach, “Isolation, identification, and continuous culture of coronary endothelial cells from guinea pig hearts,” European Journal of Cell Biology, vol. 24, no. 2, pp. 287–297, 1981. View at Scopus
  7. J. G. Derhaag, A. M. Duijvestijn, J. J. Emeis, W. Engels, and P. J. C. Van Breda Vriesman, “Production and characterization of spontaneous rat heart endothelial cell lines,” Laboratory Investigation, vol. 74, no. 2, pp. 437–451, 1996. View at Scopus
  8. S. Nistri, L. Mazzetti, P. Failli, and D. Bani, “High-yield method for isolation and culture of endothelial cells from rat coronary blood vessels suitable for analysis of intracellular calcium and nitric oxide biosynthetic pathways,” Biological Procedures Online, vol. 4, no. 1, pp. 32–37, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Cirillo, P. Golino, M. Ragni, A. Guarino, P. Calabro, and M. Chiarriello, “A simple method for the isolation, cultivation, and characterization of endothelial cells from rabbit coronary circulation,” Thrombosis Research, vol. 96, no. 4, pp. 329–333, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. C. A. Diglio, P. Grammas, F. Giacomelli, and J. Wiener, “Rat heart-derived endothelial and smooth muscle cell cultures: isolation, cloning and characterization,” Tissue and Cell, vol. 20, no. 4, pp. 477–492, 1988. View at Scopus
  11. B. Teng, H. R. Ansari, P. J. Oldenburg, J. Schnermann, and S. J. Mustafa, “Isolation and characterization of coronary endothelial and smooth muscle cells from A1 adenosine receptor-knockout mice,” American Journal of Physiology, vol. 290, no. 4, pp. H1713–H1720, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Grafe, K. Graf, W. Auch-Schwelk, D. Terbeek, H. Hertel, and E. Fleck, “Cultivation and characterization of micro- and macrovascular endothelial cells from the human heart,” European Heart Journal, vol. 14, no. I, pp. 74–81, 1993. View at Scopus
  13. F. M. Marelli-Berg, E. Peek, E. A. Lidington, H. J. Stauss, and R. I. Lechler, “Isolation of endothelial cells from murine tissue,” Journal of Immunological Methods, vol. 244, no. 1-2, pp. 205–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. R. M. Mcdouall, M. Yacoub, and M. L. Rose, “Isolation, culture, and characterisation of MHC class II-positive microvascular endothelial cells from the human heart,” Microvascular Research, vol. 51, no. 2, pp. 137–152, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. Y.-C. Lim and F. W. Luscinskas, “Isolation and culture of murine heart and lung endothelial cells for in vitro model systems,” Methods in Molecular Biology, vol. 341, pp. 141–154, 2006. View at Scopus
  16. X. Gu, L. Cheng, W. L. Chueng et al., “Neovascularization of ischemic myocardium by newly isolated tannins prevents cardiomyocyte apoptosis and improves cardiac function,” Molecular Medicine, vol. 12, no. 11-12, pp. 275–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. He and M. J. Spiro, “Isolation of rat heart endothelial cells and pericytes: evaluation of their role in the formation of extracellular matrix components,” Journal of Molecular and Cellular Cardiology, vol. 27, no. 5, pp. 1173–1183, 1995. View at Scopus
  18. M. Nishida, W. W. Carley, M. E. Gerritsen, O. Ellingsen, R. A. Kelly, and T. W. Smith, “Isolation and characterization of human and rat cardiac microvascular endothelial cells,” American Journal of Physiology, vol. 264, no. 2, pp. H639–H652, 1993. View at Scopus
  19. D. P. Via, A. L. Plant, and I. F. Craig, “Metabolism of normal and modified low-density lipoproteins by macrophage cell lines of murine and human origin,” Biochimica et Biophysica Acta, vol. 833, no. 3, pp. 417–428, 1985. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Okaji, N. H. Tsuno, J. Kitayama et al., “A novel method for isolation of endothelial cells and macrophages from murine tumors based on Ac-LDL uptake and CD16 expression,” Journal of Immunological Methods, vol. 295, no. 1-2, pp. 183–193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. B. C. Oxhorn, D. J. Hirzel, and L. L. O. Buxton, “Isolation and characterization of large numbers of endothelial cells for studies of cell signaling,” Microvascular Research, vol. 64, no. 2, pp. 302–315, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Auerbach, R. Lewis, B. Shinners, L. Kubai, and N. Akhtar, “Angiogenesis assays: a critical overview,” Clinical Chemistry, vol. 49, no. 1, pp. 32–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Holthofer, “Lectin binding sites in kidney. A comparative study of 14 animal species,” Journal of Histochemistry and Cytochemistry, vol. 31, no. 4, pp. 531–537, 1983. View at Scopus
  24. N. Ieronimakis, G. Balasundaram, and M. Reyes, “Direct isolation, culture and transplant of mouse skeletal muscle derived endothelial cells with angiogenic potential,” PLoS ONE, vol. 3, no. 3, Article ID e0001753, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. D. A. Ingram, L. E. Mead, H. Tanaka et al., “Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood,” Blood, vol. 104, no. 9, pp. 2752–2760, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Reyes, A. Dudek, B. Jahagirdar, L. Koodie, P. H. Marker, and C. M. Verfaillie, “Origin of endothelial progenitors in human postnatal bone marrow,” Journal of Clinical Investigation, vol. 109, no. 3, pp. 337–346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. J. W. Ford, T. H. Welling III, J. C. Stanley, and L. M. Messina, “PKH26 and 125I-PKH95: characterization and efficacy as labels for in vitro and in vivo endothelial cell localization and tracking,” Journal of Surgical Research, vol. 62, no. 1, pp. 23–28, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Middleton, L. Americh, R. Gayon et al., “A comparative study of endothelial cell markers expressed in chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von Willebrand factor, CD31, CD34, CD105 and CD146,” Journal of Pathology, vol. 206, no. 3, pp. 260–268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Cross and L. Claesson-Welsh, “FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition,” Trends in Pharmacological Sciences, vol. 22, no. 4, pp. 201–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. R. L. Kendall and K. A. Thomas, “Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 22, pp. 10705–10709, 1993. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Birchmeier, W. Birchmeier, E. Gherardi, and G. F. Vande Woude, “Met, metastasis, motility and more,” Nature Reviews Molecular Cell Biology, vol. 4, no. 12, pp. 915–925, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Ladoux and C. Frelin, “Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart,” Biochemical and Biophysical Research Communications, vol. 195, no. 2, pp. 1005–1010, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. L. I. Jian, L. F. Brown, M. G. Hibberd, J. D. Grossman, J. P. Morgan, and M. Simons, “VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis,” American Journal of Physiology, vol. 270, no. 5, pp. H1803–H1811, 1996. View at Scopus
  34. M. C. Puri, J. Rossant, K. Alitalo, A. Bernstein, and J. Partanen, “The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells,” EMBO Journal, vol. 14, no. 23, pp. 5884–5891, 1995. View at Scopus
  35. T. N. Sato, Y. Tozawa, U. Deutsch et al., “Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation,” Nature, vol. 376, no. 6535, pp. 70–74, 1995. View at Scopus
  36. E. A. Jaffe, L. W. Hoyer, and R. L. Nachman, “Synthesis of Von Willebrand factor by cultured human endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 71, no. 5, pp. 1906–1909, 1974. View at Scopus
  37. J. E. Sadler, “Biochemistry and genetics of von Willebrand factor,” Annual Review of Biochemistry, vol. 67, pp. 395–424, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. U. M. Vischer, F. R. Herrmann, T. Peyrard, R. Nzietchueng, and A. Benetos, “Plasma von Willebrand factor and arterial aging,” Journal of Thrombosis and Haemostasis, vol. 3, no. 4, pp. 794–795, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. S. Pollock, U. Forstermann, J. A. Mitchell et al., “Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 23, pp. 10480–10484, 1991. View at Scopus
  40. O. W. Griffith and D. J. Stuehr, “Nitric oxide synthases: properties and catalytic mechanism,” Annual Review of Physiology, vol. 57, pp. 707–736, 1995. View at Scopus
  41. F. Breviario, L. Caveda, M. Corada et al., “Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 8, pp. 1229–1239, 1995. View at Scopus
  42. P. J. Newman, M. C. Berndt, J. Gorski et al., “PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily,” Science, vol. 247, no. 4947, pp. 1219–1222, 1990. View at Scopus
  43. S. M. Albelda, W. A. Muller, C. A. Buck, and P. J. Newman, “Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule,” Journal of Cell Biology, vol. 114, no. 5, pp. 1059–1068, 1991. View at Scopus
  44. L. Fina, H. V. Molgaard, D. Robertson et al., “Expression of the CD34 gene in vascular endothelial cells,” Blood, vol. 75, no. 12, pp. 2417–2426, 1990. View at Scopus
  45. B. J. Nickoloff, “The human progenitor cell antigen (CD34) is localized on endothelial cells, dermal dendritic cells, and perifollicular cells in formalin-fixed normal skin, and on proliferating endothelial cells and stromal spindle-shaped cells in Kaposi's sarcoma,” Archives of Dermatology, vol. 127, no. 4, pp. 523–529, 1991. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Daviet and J. L. McGregor, “Vascular biology of CD36: roles of this new adhesion molecule family in different disease states,” Thrombosis and Haemostasis, vol. 78, no. 1, pp. 65–69, 1997. View at Scopus
  47. I. Shiojima, I. Komuro, T. Oka et al., “Context-dependent transcriptional cooperation mediated by cardiac transcription factors Csx/Nkx-2.5 and GATA-4,” Journal of Biological Chemistry, vol. 274, no. 12, pp. 8231–8239, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. T. J. Lints, L. M. Parsons, L. Hartley, I. Lyons, and R. P. Harvey, “Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants,” Development, vol. 119, no. 2, pp. 419–431, 1993. View at Scopus
  49. I. Komuro and S. Izumo, “Csx: a murine homeobox-containing gene specifically expressed in the developing heart,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 17, pp. 8145–8149, 1993. View at Scopus
  50. G. Nemer and M. Nemer, “Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells,” Development, vol. 129, no. 17, pp. 4045–4055, 2002. View at Scopus
  51. B. A. Teicher and S. P. Fricker, “CXCL12 (SDF-1)/CXCR4 pathway in cancer,” Clinical Cancer Research, vol. 16, no. 11, pp. 2927–2931, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. D'Apuzzo, A. Rolink, M. Loetscher et al., “The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4,” European Journal of Immunology, vol. 27, no. 7, pp. 1788–1793, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Feil and H. G. Augustin, “Endothelial cells differentially express functional CXC-chemokine receptor-4 (CXCR-4/fusin) under the control of autocrine activity and exogenous cytokines,” Biochemical and Biophysical Research Communications, vol. 247, no. 1, pp. 38–45, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. N. A. Cipriani, O. O. Abidoye, E. Vokes, and R. Salgia, “MET as a target for treatment of chest tumors,” Lung Cancer, vol. 63, no. 2, pp. 169–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, “Divergent functions of murine Pax3 and Pax7 in limb muscle development,” Genes and Development, vol. 18, no. 9, pp. 1088–1105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Buckingham and F. Relaix, “The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 645–673, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. K. L. Crossin and L. A. Krushel, “Cellular signaling by neural cell adhesion molecules of the immunoglobulin superfamily,” Developmental Dynamics, vol. 218, pp. 260–279, 2000.
  58. S. V. Shmelkov, R. St.Clair, D. Lyden, and S. Rafii, “AC133/CD133/Prominin-1,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 4, pp. 715–719, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Pfenniger, J.-P. Derouette, V. Verma et al., “Gap junction protein Cx37 interacts with endothelial nitric oxide synthase in endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 4, pp. 827–834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. L.-L. Zhu, L.-Y. Wu, D. T. Yew, and M. Fan, “Effects of hypoxia on the proliferation and differentiation of NSCs,” Molecular Neurobiology, vol. 31, no. 1–3, pp. 231–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. S. A. Consigli and J. Joseph-Silverstein, “Immunolocalization of basic fibroblast growth factor during chicken cardiac development,” Journal of Cellular Physiology, vol. 146, no. 3, pp. 379–385, 1991. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Ratajska, R. J. Torry, G. T. Kitten, S. J. Kolker, and R. J. Tomanek, “Modulation of cell migration and vessel formation by vascular endothelial growth factor and basic fibroblast growth factor in cultured embryonic heart,” Developmental Dynamics, vol. 203, no. 4, pp. 399–407, 1995. View at Scopus
  63. D. Fraga, T. Meulia, and S. Fenster, Current Protocols Essential Laboratory Technique: Chapter 10, 2008.
  64. B. Millauer, S. Wizigmann-Voos, H. Schnurch et al., “High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis,” Cell, vol. 72, no. 6, pp. 835–846, 1993. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Nyberg, L. Xie, and R. Kalluri, “Endogenous inhibitors of angiogenesis,” Cancer Research, vol. 65, no. 10, pp. 3967–3979, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. J. C. Voyta, D. P. Via, C. E. Butterfield, and B. R. Zetter, “Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein,” Journal of Cell Biology, vol. 99, no. 6, pp. 2034–2040, 1984. View at Scopus
  67. Y. Kubota, H. K. Kleinman, G. R. Martin, and T. J. Lawley, “Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures,” Journal of Cell Biology, vol. 107, no. 4, pp. 1589–1598, 1988. View at Scopus
  68. A. Passaniti, R. M. Taylor, R. Pili et al., “A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor,” Laboratory Investigation, vol. 67, no. 4, pp. 519–528, 1992. View at Scopus
  69. J. Alroy, V. Goyal, and E. Skutelsky, “Lectin histochemistry of mammalian endothelium,” Histochemistry, vol. 86, no. 6, pp. 603–607, 1987. View at Scopus
  70. O. Cleaver and D. A. Melton, “Endothelial signaling during development,” Nature Medicine, vol. 9, no. 6, pp. 661–668, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. S. J. Morrison, P. M. White, C. Zock, and D. J. Anderson, “Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells,” Cell, vol. 96, no. 5, pp. 737–749, 1999. View at Scopus
  72. C. Holmes and W. L. Stanford, “Concise review: stem cell antigen-1: expression, function, and enigma,” Stem Cells, vol. 25, no. 6, pp. 1339–1347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. T. P. Gumley, I. F. C. McKenzie, and M. S. Sandrin, “Tissue expression, structure and function of the murine Ly-6 family of molecules,” Immunology and Cell Biology, vol. 73, no. 4, pp. 277–296, 1995. View at Scopus
  74. A. Woodfin, M.-B. Voisin, and S. Nourshargh, “PECAM-1: a multi-functional molecule in inflammation and vascular biology,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2514–2523, 2007. View at Publisher · View at Google Scholar · View at Scopus