About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 362761, 9 pages
http://dx.doi.org/10.1155/2013/362761
Review Article

Radiobiology of Radiosurgery for the Central Nervous System

1Departments of Radiation Oncology and Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
2Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
3Department of Radiation Oncology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany

Received 10 May 2013; Accepted 19 September 2013

Academic Editor: Ana Maria Tari

Copyright © 2013 Antonio Santacroce et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Niranjan, G. T. Gobbel, D. Kondziolka, J. C. Flickinger, and L. D. Lunsford, “Experimental radiobiological investigations into radiosurgery: present understanding and future directions,” Neurosurgery, vol. 55, no. 3, pp. 495–504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. E. Romero-Rojas, J. A. Diaz-Perez, D. Amaro, A. Lozano-Castillo, and S. I. Chinchilla-Olaya, “Glioblastoma metastasis to parotid gland and neck lymph nodes: fine-needle aspiration cytology with histopathologic correlation,” Head and Neck Pathology, 2013.
  3. B. Larsson, L. Leksell, B. Rexed, P. Sourander, W. Mair, and B. Andersson, “The high-energy proton beam as a neurosurgical tool,” Nature, vol. 182, no. 4644, pp. 1222–1223, 1958. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Steiner, D. Forster, and L. Leksell, “Gammathalamotomy in intractable pain,” Acta Neurochirurgica, vol. 52, no. 3-4, pp. 173–184, 1980. View at Scopus
  5. D. Kondziolka, A. Niranjan, L. D. Lunsford, and J. C. Flickinger, “Radiobiology of radiosurgery,” Progress in Neurological Surgery, vol. 20, pp. 16–27, 2007. View at Scopus
  6. Y. Shibamoto, S. Otsuka, H. Iwata, C. Sugie, H. Ogino, and N. Tomita, “Radiobiological evaluation of the radiation dose as used inhigh-precision radiotherapy: effect of prolonged deliverytime and applicability of the linear-quadratic model,” Journal of Radiation Research, vol. 53, no. 1, pp. 1–9, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Kano, D. Kondziolka, J. C. Flickinger, et al., “Stereotactic radiosurgery after embolization for arteriovenous malformations,” Progress in Neurological Surgery, vol. 27, pp. 89–96, 2013.
  8. L. D. Lunsford, A. Niranjan, H. Kano, and D. Kondziolka, “The technical evolution of gamma knife radiosurgery for arteriovenous malformations,” Progress in Neurological Surgery, vol. 27, pp. 22–34, 2013.
  9. J. Regis, R. Carron, S. Moucharrafien, et al., “Role of radiosurgery and stereotactic radiotherapy in the management of vestibular schwannomas,” Cancer/Radiothérapie, vol. 16, pp. S70–S78, 2012. View at Publisher · View at Google Scholar
  10. A. E. Elia, H. A. Shih, and J. S. Loeffler, “Stereotactic radiation treatment for benign meningiomas,” Neurosurgical Focus, vol. 23, no. 4, p. E5, 2007. View at Scopus
  11. D. Kondziolka, D. Mathieu, L. D. Lunsford et al., “Radiosurgery as definitive management of intracranial meningiomas,” Neurosurgery, vol. 62, no. 1, pp. 53–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Kollova, R. Liscak, J. Novotny, et al., “Gamma Knife surgery for benign meningioma,” Journal of Neurosurgery, vol. 107, no. 2, pp. 325–336, 2007. View at Publisher · View at Google Scholar
  13. A. Santacroce, M. Walier, J. Régis et al., “Long-term tumor control of benign intracranial meningiomas after radiosurgery in a series of 4565 patients,” Neurosurgery, vol. 70, no. 1, pp. 32–39, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. M. M. Elkind, H. Sutton-Gilbert, W. B. Moses, T. Alescio, and R. W. Swain, “Radiation response of mammalian cells grown in culture. V. Temperature dependence of the repair of X-ray damage in surviving cells (Aerobic and Hypoxic),” Radiation Research, vol. 25, no. 2, pp. 359–376, 1965. View at Publisher · View at Google Scholar
  15. M. M. Elkind and H. Sutton, “Radiation response of mammalian cells grown in culture. 1. Repair of X-ray damage in surviving Chinese hamster cells.,” Radiation Research, vol. 13, no. 4, pp. 556–593, 1960. View at Publisher · View at Google Scholar
  16. E. J. Hall and D. J. Brenner, “The radiobiology of radiosurgery: rationale for different treatment regimes for AVMs and malignancies,” International Journal of Radiation Oncology Biology Physics, vol. 25, no. 2, pp. 381–385, 1993. View at Scopus
  17. A. Niranjan and J. C. Flickinger, “Radiobiology, principle and technique of radiosurgery,” Progress in Neurological Surgery, vol. 21, pp. 32–42, 2008.
  18. A. Niranjan and L. D. Lunsford, “Radiosurgery: where we were, are, and may be in the third millennium,” Neurosurgery, vol. 46, no. 3, pp. 531–543, 2000. View at Scopus
  19. H. R. Withers, H. D. Thames Jr., and L. J. Peters, “A new isoeffect curve for change in dose per fraction,” Radiotherapy and Oncology, vol. 1, no. 2, pp. 187–191, 1983. View at Scopus
  20. K. K. Ang, G. Jiang, Y. Feng, L. C. Stephens, S. L. Tucker, and R. E. Price, “Extent and kinetics of recovery of occult spinal cord injury,” International Journal of Radiation Oncology Biology Physics, vol. 50, no. 4, pp. 1013–1020, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. K. K. Ang, A. J. van der Kogel, and E. van der Schueren, “Lack of evidence for increased tolerance of rat spinal cord with decreasing fraction doses below 2 Gy,” International Journal of Radiation Oncology Biology Physics, vol. 11, no. 1, pp. 105–110, 1985. View at Scopus
  22. D. A. Larson and M. W. McDermott, “Radiosurgery,” Western Journal of Medicine, vol. 165, no. 1-2, pp. 59–60, 1996. View at Scopus
  23. D. A. Larson, J. C. Flickinger, and J. S. Loeffler, “The radiobiology of radiosurgery,” International Journal of Radiation Oncology Biology Physics, vol. 25, no. 3, pp. 557–561, 1993. View at Scopus
  24. C. W. Song, L. C. Cho, J. Yuan, K. E. Dusenbery, R. J. Griffin, and S. H. Levitt, “Radiobiology of stereotactic body radiation therapy/stereotactic radiosurgery and the linear-quadratic model,” International Journal of Radiation Oncology ‘Biology’ Physics, vol. 87, no. 1, pp. 18–19, 2013. View at Publisher · View at Google Scholar
  25. J. F. Fowler, “The linear-quadratic formula and progress in fractionated radiotherapy,” British Journal of Radiology, vol. 62, no. 740, pp. 679–694, 1989. View at Scopus
  26. J. D. Chapman and C. J. Gillespie, “The power of radiation biophysics-let's use it,” International Journal of Radiation Oncology ‘Biology’ Physics, vol. 84, no. 2, pp. 309–311, 2012. View at Publisher · View at Google Scholar
  27. D. J. Brenner, R. K. Sachs, L. J. Peters, H. R. Withers, and E. J. Hall, “We forget at our peril the lessons built into the alpha/beta model,” International Journal of Radiation Oncology Biology Physics, vol. 82, no. 4, pp. 1312–1314, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. D. J. Brenner, “The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction,” Seminars in Radiation Oncology, vol. 18, no. 4, pp. 234–239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. P. Kirkpatrick, J. J. Meyer, and L. B. Marks, “The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery,” Seminars in Radiation Oncology, vol. 18, no. 4, pp. 240–243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Wulf, K. Baier, G. Mueller, and M. P. Flentje, “Dose-response in stereotactic irradiation of lung tumors,” Radiotherapy and Oncology, vol. 77, no. 1, pp. 83–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. U. Haedinger, T. Krieger, M. Flentje, and J. Wulf, “Influence of calculation model on dose distribution in stereotactic radiotherapy for pulmonary targets,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 1, pp. 239–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. T. Milano, A. W. Katz, M. C. Schell, A. Philip, and P. Okunieff, “Descriptive analysis of oligometastatic lesions treated with curative-intent stereotactic body radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 72, no. 5, pp. 1516–1522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Otsuka, Y. Shibamoto, H. Iwata et al., “Compatibility of the linear-quadratic formalism and biologically effective dose concept to high-dose-per-fraction irradiation in a murine tumor,” International Journal of Radiation Oncology Biology Physics, vol. 81, no. 5, pp. 1538–1543, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Shibamoto, Y. Kitakabu, R. Murata et al., “Reoxygenation in the SCCVII tumor after KU-2285 sensitization plus single or fractionated irradiation,” International Journal of Radiation Oncology Biology Physics, vol. 29, no. 3, pp. 583–586, 1994. View at Scopus
  35. R. Murata, Y. Shibamoto, K. Sasai et al., “Reoxygenation after single irradiation in rodent tumors of different types and sizes,” International Journal of Radiation Oncology Biology Physics, vol. 34, no. 4, pp. 859–865, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Iwata, Y. Shibamoto, R. Murata et al., “Estimation of errors associated with use of linear-quadratic formalism for evaluation of biologic equivalence between single and hypofractionated radiation doses: an in vitro study,” International Journal of Radiation Oncology Biology Physics, vol. 75, no. 2, pp. 482–488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. T. T. Puck and P. I. Marcus, “Action of x-rays on mammalian cells,” Journal of Experimental Medicine, vol. 103, no. 5, pp. 653–666, 1956. View at Publisher · View at Google Scholar
  38. L. M. Garcia, J. Leblanc, D. Wilkins, and G. P. Raaphorst, “Fitting the linear-quadratic model to detailed data sets for different dose ranges,” Physics in Medicine and Biology, vol. 51, no. 11, pp. 2813–2823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Tomita, Y. Shibamoto, M. Ito et al., “Biological effect of intermittent radiation exposure in vivo: recovery from sublethal damage versus reoxygenation,” Radiotherapy and Oncology, vol. 86, no. 3, pp. 369–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. G. Douglas and J. F. Fowler, “The effect of multiple small doses of X rays on skin reactions in the mouse and a basic interpretation,” Radiation Research, vol. 66, no. 2, pp. 401–426, 1976. View at Scopus
  41. J. F. Fowler, “Review: total doses in fractionated radiotherapy—implications of new radiobiological data,” International Journal of Radiation Biology, vol. 46, no. 2, pp. 103–120, 1984. View at Scopus
  42. A. J. van der Kogel, “Chronic effects of neutrons and charged particles on spinal cord, lung, and rectum,” Radiation Research, vol. 8, pp. S208–S216, 1985. View at Scopus
  43. J. W. Peck and F. A. Gibbs, “Mechanical assay of consequential and primary late radiation effects in murine small intestine: alpha/beta analysis,” Radiation Research, vol. 138, no. 2, pp. 272–281, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. J. F. Fowler, W. A. Tomé, J. D. Fenwick, and M. P. Mehta, “A challenge to traditional radiation oncology,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 4, pp. 1241–1256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Astrahan, “Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation,” Medical Physics, vol. 35, no. 9, pp. 4161–4172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Park, L. Papiez, S. Zhang, M. Story, and R. D. Timmerman, “Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy,” International Journal of Radiation Oncology ‘Biology’ Physics, vol. 70, no. 3, pp. 847–852, 2008. View at Publisher · View at Google Scholar
  47. M. Guerrero and X. A. Li, “Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy,” Physics in Medicine and Biology, vol. 49, no. 20, pp. 4825–4835, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Guerrero and M. Carlone, “Mechanistic formulation of a lineal-quadratic-linear (LQL) model: split-dose experiments and exponentially decaying sources,” Medical Physics, vol. 37, no. 8, pp. 4173–4181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Z. Wang, Z. Huang, S. S. Lo, W. T. C. Yuh, and N. A. Mayr, “A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy,” Science Translational Medicine, vol. 2, no. 39, Article ID 39ra48, pp. 39–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Glatstein, “The omega on alpha and beta,” International Journal of Radiation Oncology Biology Physics, vol. 81, no. 2, pp. 319–320, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. T. F. Witham, H. Okada, W. Fellows et al., “The characterization of tumor apoptosis after experimental radiosurgery,” Stereotactic and Functional Neurosurgery, vol. 83, no. 1, pp. 17–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Shaw, C. Scott, L. Souhami et al., “Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of Radiation Therapy Oncology Group protocol 90-05,” International Journal of Radiation Oncology Biology Physics, vol. 34, no. 3, pp. 647–654, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Shaw, C. Scott, L. Souhami et al., “Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90- 05,” International Journal of Radiation Oncology Biology Physics, vol. 47, no. 2, pp. 291–298, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Andersson, B. Larsson, L. Leksell et al., “Histopathology of late local radiolesions in the goat brain,” Acta Radiologica, vol. 9, no. 5, pp. 385–394, 1970. View at Scopus
  55. L. Kihlström, T. Hindmarsh, I. Lax, B. Lippitz, P. Mindus, and C. Lindquist, “Radiosurgical lesions in the normal human brain 17 years after gamma knife capsulotomy,” Neurosurgery, vol. 41, no. 2, pp. 396–402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Kondziolka, L. D. Lunsford, D. Claassen, A. H. Maitz, J. C. Flickinger, and P. H. Gutin, “Radiobiology of radiosurgery: part I. The normal rat brain model,” Neurosurgery, vol. 31, no. 2, pp. 271–279, 1992. View at Scopus
  57. H. J. Park, R. J. Griffin, S. Hui, S. H. Levitt, and C. W. Song, “Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS),” Radiation Research, vol. 177, no. 3, pp. 311–327, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Tsuzuki, S. Tsunoda, T. Sakaki et al., “Tumor cell proliferation and apoptosis associated with the Gamma Knife effect,” Stereotactic and Functional Neurosurgery, vol. 66, supplement 1, pp. 39–48, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Yamamoto, M. Jimbo, M. Kobayashi et al., “Long-term results of radiosurgery for arteriovenous malformation: neurodiagnostic imaging and histological studies of angiographically confirmed nidus obliteration,” Surgical Neurology, vol. 37, no. 3, pp. 219–230, 1992. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Grabham, B. Hu, P. Sharma, and C. Geard, “Effects of ionizing radiation on three-dimensional human vessel models: differential effects according to radiation quality and cellular development,” Radiation Research, vol. 175, no. 1, pp. 21–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. J. C. Flickinger and A. Niranjan, “Stereotactic radiosurgery and radiotherapy,” in Perez Brady's Principles and Practice of Radiation Oncology, vol. 15, pp. 378–388, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2008.
  62. S. L. Stafford, B. E. Pollock, J. A. Leavitt, et al., “A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery,” International Journal of Radiation Oncology*Biology*Physics, vol. 55, no. 5, pp. 1177–1181, 2003. View at Publisher · View at Google Scholar
  63. J. C. Flickinger, D. Kondziolka, B. E. Pollock, A. H. Maitz, and L. D. Lunsford, “Complications fromarteriovenous malformation radiosurgery:multivariate analysis and riskmodeling,” International Journal of Radiation Oncology Biology Physics, vol. 38, no. 3, pp. 485–490, 1997.
  64. J. C. Flickinger, D. Kondziolka, L. D. Lunsford et al., “Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients,” International Journal of Radiation Oncology Biology Physics, vol. 46, no. 5, pp. 1143–1148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. H. P. Bijl, P. Van Luijk, R. P. Coppes, J. M. Schippers, A. W. T. Konings, and A. J. Van der Kogel, “Dose-volume effects in the rat cervical spinal cord after proton irradiation,” International Journal of Radiation Oncology Biology Physics, vol. 52, no. 1, pp. 205–211, 2002. View at Publisher · View at Google Scholar · View at Scopus